题目内容

3.已知函数f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2).
(1)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(2)已知P={a|函数f(x)在区间[(a+1)2,+∞)上是增函数};Q={a|函数g(x)是减函数}.求(P∩CRQ)∪(Q∩CRP);
(3)在(2)的条件下,比较f(2)与3-lg2的大小.

分析 (1)设f(x)=g(x)+h(x),利用函数的奇偶性,组成方程组,即可求得函数的解析式;
(2)将函数f(x)配方,利用函数在区间[(a+1)2,+∞)上是增函数,可得命题P为真的条件;利用函数g(x)=(a+1)x是减函数,可得命题Q为真的条件,从而可求命题P、Q有且仅有一个是真命题,即(P∩CRQ)∪(Q∩CRP);
(3)由(1)得f(2)=2a+lg|a+2|+6,确定函数v(a)=2a+lg(a+2)+6,在区间[-$\frac{3}{2}$,+∞)上为增函数,即可求得结论

解答 解:(I)∵f(x)=g(x)+h(x),g(-x)=-g(x),h(-x)=h(x),
∴f(-x)=-g(x)+h(x),
∴g(x)=$\frac{1}{2}$[f(x)-f(-x)]=$\frac{1}{2}$[x2+(a+1)x+lg|a+2|-x2+(a+1)x-lg|a+2|]=(a+1)x
h(x)=$\frac{1}{2}$[f(x)+f(-x)]=$\frac{1}{2}$[x2+(a+1)x+lg|a+2|+x2-(a+1)x+lg|a+2|]=x2+lg|a+2|;
(II)∵函数f(x)=x2+(a+1)x+lg|a+2|=(x+$\frac{a+1}{2}$)2-$\frac{(a+1)^{2}}{4}$+lg|a+2|在区间[(a+1)2,+∞)上是增函数,
∴(a+1)2≥-$\frac{a+1}{2}$,解得a≥-1或a≤-$\frac{3}{2}$且a≠-2
又由函数g(x)=(a+1)x是减函数,得a+1<0,
∴a<-1且a≠-2
∴命题P为真的条件是:P={a|a≥-1或a≤-$\frac{3}{2}$且a≠-2},Q={a|a<-1且a≠-2}.
∴(P∩CRQ)∪(Q∩CRP)={a|a>-$\frac{3}{2}$};
(III)由(I)得f(2)=2a+lg|a+2|+6,
∵a>-$\frac{3}{2}$,
∴f(2)=2a+lg(a+2)+6,
设函数v(a)=2a+lg(a+2)+6,
v′(a)=2+$\frac{1}{(a+2)ln10}$>0.
∴函数v(a)在区间[-$\frac{3}{2}$,+∞)上为增函数.
又∵v(-$\frac{3}{2}$)=3-lg2,
∴当a>-$\frac{3}{2}$时,v(a)>v(-$\frac{3}{2}$),
即f(2)>3-lg2

点评 本题考查函数单调性与奇偶性的结合,考查函数的单调性,考查大小比较,正确运用函数的单调性是关键

练习册系列答案
相关题目
15.某数学老师身高179cm,他爷爷、父亲和儿子的身高分别是176cm、173cm和185cm,因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测孙子的身高,已知父亲与儿子身高如表一:
 父亲身高x(cm) 176 173 179
 儿子身高y(cm) 173 179 185
该数学老师提供了三种求回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的方案(每种方案都正确).$\stackrel{∧}{b}$=$\frac{\sum_{\;}^{\;}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{\;}^{\;}{x}_{i}^{2}-{n\overline{x}}^{2}}$(公式1),$\stackrel{∧}{b}$=$\frac{\sum_{\;}^{\;}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{\;}^{\;}(x{{\;}_{i}-\overline{x}}^{2})}$(公式2);$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$(公式3)
(方案一):借助(公式1)求$\stackrel{∧}{b}$,借助(公式3),求$\stackrel{∧}{a}$,进而求回归直线方程;
(方案二):借助(公式2)求$\stackrel{∧}{b}$,借助(公式3)求$\stackrel{∧}{a}$,进而求回归直线方程;
(方案三):令X=x-173,Y=y-179,则(表一)转化成诶面的(表二).
 X 3 6
 Y-6 0 6
借助(表二)和(公式1)、(公式3),求出$\stackrel{∧}{Y}$=$\stackrel{∧}{b}$X+$\stackrel{∧}{a}$,进而求出y对x的回归直线(y-179)=$\stackrel{∧}{b}$(x-173)+$\stackrel{∧}{a}$.
结合数据特点任选一种方案,求y与x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并根据回归直线预测数学教师的孙子的身高.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网