题目内容
满足方程f(x)=x的根x0称为函数y=f(x)的不动点,设函数y=f(x),y=g(x)都有不动点,则下列陈述正确的是( )
分析:充分理解不动点的含义,结合函数的定义域与值域,通过举例,即可判断y=f(g(x))是否存在不动点,得到正确选项.
解答:解:满足方程f(x)=x的根x0称为函数y=f(x)的不动点,设函数y=f(x),y=g(x)都有不动点,
那么y=f(g(x))可以无不动点.
例如满足方程f(x)=x的根x0的范围是(5,9),y=g(x)的不动点在(0,1),它的值域是(-1,1),
此时函数y=f(g(x))就没有不动点.
所以A,B,C不正确,D正确.
故选D.
那么y=f(g(x))可以无不动点.
例如满足方程f(x)=x的根x0的范围是(5,9),y=g(x)的不动点在(0,1),它的值域是(-1,1),
此时函数y=f(g(x))就没有不动点.
所以A,B,C不正确,D正确.
故选D.
点评:本题以函数y=f(x)的不动点为载体,考查学生对新定义的理解,考查学生分析问题解决问题的能力,考查逻辑推理能力.
练习册系列答案
相关题目