题目内容

3.已知函数y=$\frac{{x}^{2}-5x+a}{x-2}$(x>2,a>6)的最小值是5,求a的值.

分析 x>2,a>6,变形函数y=$\frac{{x}^{2}-5x+a}{x-2}$=x-2+$\frac{a-6}{x-2}$-1,利用基本不等式的性质即可得出.

解答 解:∵x>2,a>6,
∴函数y=$\frac{{x}^{2}-5x+a}{x-2}$=$\frac{{x}^{2}-2x-3(x-2)+a-6}{x-2}$=x-2+$\frac{a-6}{x-2}$-1≥$2\sqrt{(x-2)•\frac{a-6}{x-2}}$-1=2$\sqrt{a-6}$-1,
当且仅当x-2=$\sqrt{a-6}$时,函数y=$\frac{{x}^{2}-5x+a}{x-2}$(x>2,a>6)的最小值2$\sqrt{a-6}$-1,
∴2$\sqrt{a-6}$-1=5,解得a=15.此时x=5.
∴a=15.

点评 本题考查了基本不等式的性质,考查了变形能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网