ÌâÄ¿ÄÚÈÝ
£¨2000•ÉϺ££©ÒÑÖª¸´Êýz0=1-mi£¨m£¾0£©£¬z=x+yiºÍw=x'+y'i£¬ÆäÖÐx£¬y£¬x'£¬y'¾ùΪʵÊý£¬iΪÐéÊýµ¥Î»£¬ÇÒ¶ÔÓÚÈÎÒ⸴Êýz£¬ÓÐw=
•
£¬|w|=2|z|£®
£¨¢ñ£©ÊÔÇómµÄÖµ£¬²¢·Ö±ðд³öx'ºÍy'ÓÃx¡¢y±íʾµÄ¹Øϵʽ£»
£¨¢ò£©½«£¨x¡¢y£©×÷ΪµãPµÄ×ø±ê£¬£¨x'¡¢y'£©×÷ΪµãQµÄ×ø±ê£¬ÉÏÊö¹Øϵ¿ÉÒÔ¿´×÷ÊÇ×ø±êƽÃæÉϵãµÄÒ»¸ö±ä»»£ºËü½«Æ½ÃæÉϵĵãP±äµ½ÕâһƽÃæÉϵĵãQ£¬µ±µãPÔÚÖ±Ïßy=x+1ÉÏÒƶ¯Ê±£¬ÊÔÇóµãP¾¸Ã±ä»»ºóµÃµ½µÄµãQµÄ¹ì¼£·½³Ì£»
£¨¢ó£©ÊÇ·ñ´æÔÚÕâÑùµÄÖ±ÏߣºËüÉÏÃæµÄÈÎÒ»µã¾ÉÏÊö±ä»»ºóµÃµ½µÄµãÈÔÔÚ¸ÃÖ±ÏßÉÏ£¿Èô´æÔÚ£¬ÊÔÇó³öËùÓÐÕâЩֱÏߣ»Èô²»´æÔÚ£¬Ôò˵Ã÷ÀíÓÉ£®
. |
z0 |
. |
z |
£¨¢ñ£©ÊÔÇómµÄÖµ£¬²¢·Ö±ðд³öx'ºÍy'ÓÃx¡¢y±íʾµÄ¹Øϵʽ£»
£¨¢ò£©½«£¨x¡¢y£©×÷ΪµãPµÄ×ø±ê£¬£¨x'¡¢y'£©×÷ΪµãQµÄ×ø±ê£¬ÉÏÊö¹Øϵ¿ÉÒÔ¿´×÷ÊÇ×ø±êƽÃæÉϵãµÄÒ»¸ö±ä»»£ºËü½«Æ½ÃæÉϵĵãP±äµ½ÕâһƽÃæÉϵĵãQ£¬µ±µãPÔÚÖ±Ïßy=x+1ÉÏÒƶ¯Ê±£¬ÊÔÇóµãP¾¸Ã±ä»»ºóµÃµ½µÄµãQµÄ¹ì¼£·½³Ì£»
£¨¢ó£©ÊÇ·ñ´æÔÚÕâÑùµÄÖ±ÏߣºËüÉÏÃæµÄÈÎÒ»µã¾ÉÏÊö±ä»»ºóµÃµ½µÄµãÈÔÔÚ¸ÃÖ±ÏßÉÏ£¿Èô´æÔÚ£¬ÊÔÇó³öËùÓÐÕâЩֱÏߣ»Èô²»´æÔÚ£¬Ôò˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©ÓÉÌâÉ裬|w|=|
•
|=|z0||z|=2|z|£¬Çó³ö|z0|=2£¬¼Ì¶øÇó³öm£¬ÔÙ¸ù¾Ý¸´ÊýÏàµÈµÃ³öx'ºÍy'ÓÃx¡¢y±íʾµÄ¹Øϵʽ£»
£¨¢ò£©ÀûÓÃת»»£¬´ú»»µÄ·½·¨£¬Çó¹ì¼£·½³Ì£»
£¨¢ó£©¼ÙÉè´æÔÚÕâÑùµÄÖ±Ïߣ¬¡ßƽÐÐ×ø±êÖáµÄÖ±ÏßÏÔÈ»²»Âú×ãÌõ¼þ£¬ËùÇóÖ±Ïß¿ÉÉèΪy=kx+b£¨k¡Ù0£©
½áºÏÒÔÉÏÁ½ÎÊÇó½â£®
. |
z0 |
. |
z |
£¨¢ò£©ÀûÓÃת»»£¬´ú»»µÄ·½·¨£¬Çó¹ì¼£·½³Ì£»
£¨¢ó£©¼ÙÉè´æÔÚÕâÑùµÄÖ±Ïߣ¬¡ßƽÐÐ×ø±êÖáµÄÖ±ÏßÏÔÈ»²»Âú×ãÌõ¼þ£¬ËùÇóÖ±Ïß¿ÉÉèΪy=kx+b£¨k¡Ù0£©
½áºÏÒÔÉÏÁ½ÎÊÇó½â£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÉ裬|w|=|
•
|=|z0||z|=2|z|£¬¡à|z0|=2£¬
ÓÚÊÇÓÉ1+m2=4£¬ÇÒm£¾0£¬µÃm=
£¬¡£¨3·Ö£©
Òò´ËÓÉx¡ä+y¡äi=
•
=x+
+(
-y)i£¬
µÃ¹Øϵʽ
¡£¨5·Ö£©
£¨¢ò£©ÉèµãP£¨x£¬y£©ÔÚÖ±Ïßy=x+1ÉÏ£¬ÔòÆ侱任ºóµÄµãQ£¨x'£¬y'£©Âú×ã
£¬¡£¨7·Ö£©
ÏûÈ¥x£¬µÃy¡ä=(2-
)x¡ä-2
+2£¬
¹ÊµãQµÄ¹ì¼£·½³ÌΪy=(2-
)x-2
+2¡£¨10·Ö£©
£¨3£©¼ÙÉè´æÔÚÕâÑùµÄÖ±Ïߣ¬¡ßƽÐÐ×ø±êÖáµÄÖ±ÏßÏÔÈ»²»Âú×ãÌõ¼þ£¬
¡àËùÇóÖ±Ïß¿ÉÉèΪy=kx+b£¨k¡Ù0£©£¬¡£¨12·Ö£©
[½â·¨Ò»]¡ß¸ÃÖ±ÏßÉϵÄÈÎÒ»µãP£¨x£¬y£©£¬Æ侱任ºóµÃµ½µÄµãQ(x+
y£¬
x-y)ÈÔÔÚ¸ÃÖ±ÏßÉÏ£¬
¡à
x-y=k(x+
y)+b£¬
¼´-(
k+1)y=(k-
)x+b£¬
µ±b¡Ù0ʱ£¬·½³Ì×é
Î޽⣬
¹ÊÕâÑùµÄÖ±Ïß²»´æÔÚ£® ¡£¨16·Ö£©
µ±b=0ʱ£¬ÓÉ
=
£¬
µÃ
k2+2k-
=0£¬
½âµÃk=
»òk=-
£¬
¹ÊÕâÑùµÄÖ±Ïß´æÔÚ£¬Æä·½³ÌΪy=
x»òy=-
x£¬¡£¨18·Ö£©
[½â·¨¶þ]È¡Ö±ÏßÉÏÒ»µãP(-
£¬0)£¬Æ侱任ºóµÄµãQ(-
£¬-
)ÈÔÔÚ¸ÃÖ±ÏßÉÏ£¬
¡à-
=k(-
)+b£¬
µÃb=0£¬¡£¨14·Ö£©
¹ÊËùÇóÖ±ÏßΪy=kx£¬È¡Ö±ÏßÉÏÒ»µãP£¨0£¬k£©£¬Æ侱任ºóµÃµ½µÄµãQ(1+
k£¬
-k)ÈÔÔÚ¸ÃÖ±ÏßÉÏ£®
¡à
-k=k(1+
k)£¬¡£¨16·Ö£©
¼´
k2+2k-
=0£¬µÃk=
»òk=-
£¬
¹ÊÕâÑùµÄÖ±Ïß´æÔÚ£¬Æä·½³ÌΪy=
x»òy=-
x£¬¡£¨18·Ö£©
. |
z0 |
. |
z |
ÓÚÊÇÓÉ1+m2=4£¬ÇÒm£¾0£¬µÃm=
3 |
Òò´ËÓÉx¡ä+y¡äi=
. | ||
(1-
|
. |
(x+yi) |
3y |
3x |
µÃ¹Øϵʽ
|
£¨¢ò£©ÉèµãP£¨x£¬y£©ÔÚÖ±Ïßy=x+1ÉÏ£¬ÔòÆ侱任ºóµÄµãQ£¨x'£¬y'£©Âú×ã
|
ÏûÈ¥x£¬µÃy¡ä=(2-
3 |
3 |
¹ÊµãQµÄ¹ì¼£·½³ÌΪy=(2-
3 |
3 |
£¨3£©¼ÙÉè´æÔÚÕâÑùµÄÖ±Ïߣ¬¡ßƽÐÐ×ø±êÖáµÄÖ±ÏßÏÔÈ»²»Âú×ãÌõ¼þ£¬
¡àËùÇóÖ±Ïß¿ÉÉèΪy=kx+b£¨k¡Ù0£©£¬¡£¨12·Ö£©
[½â·¨Ò»]¡ß¸ÃÖ±ÏßÉϵÄÈÎÒ»µãP£¨x£¬y£©£¬Æ侱任ºóµÃµ½µÄµãQ(x+
3 |
3 |
¡à
3 |
3 |
¼´-(
3 |
3 |
µ±b¡Ù0ʱ£¬·½³Ì×é
|
¹ÊÕâÑùµÄÖ±Ïß²»´æÔÚ£® ¡£¨16·Ö£©
µ±b=0ʱ£¬ÓÉ
-(
| ||
1 |
k-
| ||
k |
µÃ
3 |
3 |
½âµÃk=
| ||
3 |
3 |
¹ÊÕâÑùµÄÖ±Ïß´æÔÚ£¬Æä·½³ÌΪy=
| ||
3 |
3 |
[½â·¨¶þ]È¡Ö±ÏßÉÏÒ»µãP(-
b |
k |
b |
k |
| ||
k |
¡à-
| ||
k |
b |
k |
µÃb=0£¬¡£¨14·Ö£©
¹ÊËùÇóÖ±ÏßΪy=kx£¬È¡Ö±ÏßÉÏÒ»µãP£¨0£¬k£©£¬Æ侱任ºóµÃµ½µÄµãQ(1+
3 |
3 |
¡à
3 |
3 |
¼´
3 |
3 |
| ||
3 |
3 |
¹ÊÕâÑùµÄÖ±Ïß´æÔÚ£¬Æä·½³ÌΪy=
| ||
3 |
3 |
µãÆÀ£º±¾Ì⿼²é¸´ÊýµÄÓйظÅÄîºÍ¼ÆË㣬¹ì¼£·½³ÌµÄÇó½â£¬¿¼²éת»¯¡¢´úÈë¡¢¼ÆËã¡¢ÍÆÀíÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿