题目内容

12.设a>0,且a≠1,f(x)=x($\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$).
(1)求f(x)的定义域;
(2)证明:f(x)是偶函数.

分析 (1)求使解析式有意义的x范围;
(2)从函数奇偶性的定义判断f(-x)与f(x)的关系.

解答 解:(1)要使函数有意义,只要ax≠1,即x≠0,所以函数的定义域为:{x|x∈R,x≠0};
(2)由(1)可知,函数定义域关于原点对称;
由已知,f(-x)=-x($\frac{1}{{a}^{-x}-1}$+$\frac{1}{2}$)=-x($\frac{{a}^{x}}{1-{a}^{x}}$$+\frac{1}{2}$)=x($\frac{{a}^{x}}{{a}^{x}-1}-\frac{1}{2}$)=x$\frac{2{a}^{x}-{a}^{x}+1}{2({a}^{x}-1)}$=x$\frac{{a}^{x}+1}{2({a}^{x}-1)}$=x$\frac{{a}^{x}-1+2}{2({a}^{x}-1)}$=x($\frac{1}{{a}^{x}-1}+\frac{1}{2}$)=f(x).
所以函数为偶函数.

点评 本题考查了求函数定义域以及判定函数的奇偶性.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网