题目内容

17.已知函数f(x)=2sinxcosx+2$\sqrt{3}{cos^2}x-\sqrt{3}$的最小正周期是π,单调递减区间是[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.

分析 由条件利用三角恒等变换化简函数的解析式,再根据正弦函数的周期性和单调性,求得f(x)的周期性和单调减区间.

解答 解:函数f(x)=2sinxcosx+2$\sqrt{3}{cos^2}x-\sqrt{3}$=sin2x+$\sqrt{3}$cos2x=2sin(2x+$\frac{π}{3}$),
故它的最小正周期为 $\frac{2π}{2}$=π.
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,故函数的减区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z,
故答案为:π,[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.

点评 本题主要考查三角恒等变换,正弦函数的周期性和单调性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网