题目内容
设向量
=(m,1),
=(2,-3),若满足
∥
,则m=( )
a |
b |
a |
b |
A.
| B.-
| C.
| D.-
|
∵
∥
,(
≠
),
∴存在唯一实数λ使得
=λ
,
∵
=(m,1),
=(2,-3),
∴(m,1)=λ(2,-3)=(2λ,-3λ),
即
=
,
解得:m=-
.
故选:D.
a |
b |
b |
0 |
∴存在唯一实数λ使得
a |
b |
∵
a |
b |
∴(m,1)=λ(2,-3)=(2λ,-3λ),
即
m |
2 |
1 |
-3 |
解得:m=-
2 |
3 |
故选:D.
练习册系列答案
相关题目