题目内容
经过点(1,2)的抛物线的标准方程是______________________。
如图,在直四棱柱中,底面为等腰梯形,,,,,、、分别是棱、、的中点.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值.
宜昌一中江南新校区拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为30米,其中大圆弧所在圆的半径为10米,设小圆弧所在圆的半径为米,圆心角(弧度).
(1)求关于的函数关系式;
(2)已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米,设花坛的面积与装饰总费用之比为,求关于的函数关系式,并求出的最大值.
如图,塔底部为点,若两点相距为100并且与点在同一水平线上,现从两点测得塔顶的仰角分别为和,则塔的高约为( )(精确到0.1,,)
A. 36.5 B. 115.6 C. 120.5 D. 136.5
已知直线L与抛物线C:交于A、B两点,且线段AB的中点M(3,2)。
(Ⅰ)求直线L的方程
(Ⅱ)线段AB的的长
齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则齐王的马获胜概率为( )
A. B.
C. D.
某学校高中部学生中,高一年级有700人,高二年级有500人,高三年级有300人.为了了解该校高中学生的健康状况,用分层抽样的方法从高中学生中抽取一个容量为n的样本,已知从高一年级学生中抽取14人,则n为( )
A. 30 B. 40
C. 50 D. 60
已知双曲线的实轴端点分别为,记双曲线的其中一个焦点为,一个虚轴端点为,若在线段上(不含端点)有且仅有两个不同的点,使得,则双曲线的离心率的取值范围是( )
A. B. C. D.
关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请200名同学,每人随机写下一个都小于1的正实数对,再统计两数能与1构成钝角三角形三边的数对的个数;最后再根据统计数来估计的值,假如统计结果是,那么可以估计__________.(用分数表示)