题目内容
【题目】某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )
甲 | 乙 | 原料限额 | |
A/吨 | 3 | 2 | 12 |
B/吨 | 1 | 2 | 8 |
A.15万元B.16万元C.17万元D.18万元
【答案】D
【解析】
设该企业每天生产x吨甲产品,y吨乙产品,可获得利润为z万元,根据题意列出x,y满足不等式组和的表达式,画出可行解域,通过平移直线找到使得目标函数有最大值时所经过的点的坐标,最后代入求值即可.
设该企业每天生产x吨甲产品,y吨乙产品,可获得利润为z万元,则z=3x+4y,且x,y满足不等式组
画出可行域如图中阴影部分(含边界)所示,
直线z=3x+4y过点M时,z=3x+4y取得最大值,
由得∴M(2,3),
故z=3x+4y的最大值为18,所以该企业每天可获得的最大利润为18万元.
故选:D
【题目】某公司为了对某种商品进行合理定价,需了解该商品的月销售量(单位:万件)与月销售单价(单位:元/件)之间的关系,对近个月的月销售量和月销售单价数据进行了统计分析,得到一组检测数据如表所示:
月销售单价(元/件) | ||||||
月销售量(万件) |
(1)若用线性回归模型拟合与之间的关系,现有甲、乙、丙三位实习员工求得回归直线方程分别为:,和,其中有且仅有一位实习员工的计算结果是正确的.请结合统计学的相关知识,判断哪位实习员工的计算结果是正确的,并说明理由;
(2)若用模型拟合与之间的关系,可得回归方程为,经计算该模型和(1)中正确的线性回归模型的相关指数分别为和,请用说明哪个回归模型的拟合效果更好;
(3)已知该商品的月销售额为(单位:万元),利用(2)中的结果回答问题:当月销售单价为何值时,商品的月销售额预报值最大?(精确到)
参考数据:.