题目内容

4.已知△ABC中,∠BAC=120°,AB=2,AC=1.AD是∠BAC的角平分线,交BC于D.
(Ⅰ)求BD:DC的值;
(Ⅱ)求AD的长.

分析 (Ⅰ)在三角形ABD与三角形ACD中,分别利用正弦定理列出关系式,根据AD为角平分线,互补两角正弦值相等,即可求出BD:DC的值;
(Ⅱ)三角形ABC面积=三角形ABD面积+三角形ACD面积,利用三角形面积公式列出关系式,即可求出AD的长.

解答 解:(Ⅰ)在△ABD中,$\frac{AB}{sin∠ADB}$=$\frac{BD}{sin∠BAD}$,在△ACD中,$\frac{AC}{sin∠ADC}$=$\frac{CD}{sin∠CAD}$,
∵AD是∠BAC的角平分线,∠ADB+∠ADC=180°,
∴∠BAD=∠CAD,
∵sin∠ADB=sin∠ADC,且AB=2,AC=1,
则BD:DC=AB:AC=2:1;
(Ⅱ)∵∠BAC=120°,AD平分∠BAC,
∴∠BAD=∠CAD=60°,
∵S△ABC=S△ABD+S△ACD,即$\frac{1}{2}$AB•AC•sin∠BAC=$\frac{1}{2}$AB•AD•sin∠BAD+$\frac{1}{2}$AC•AD•sin∠CAD,
∴$\frac{1}{2}$×2×1×$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$×$\frac{\sqrt{3}}{2}$×AD×(2+1),
解得:AD=$\frac{2}{3}$.

点评 此题考查了正弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网