题目内容

已知函数f(n)=
n2,当n为奇数时
-n2,当n为偶数时
且an=f(n)+f(n+1),则a1+a2+a3+…+a100等于(  )
A.0B.100C.-100D.10200
∵an=f(n)+f(n+1)
∴由已知条件知,an=
n2-(n+1)2,n为奇数
-n2+(n+1)2,n为偶数

an=
-(2n+1),n为奇数
2n+1,n为偶数

∴an=(-1)n•(2n+1)
∴an+an+1=2(n是奇数)
∴a1+a2+a3+…+a100=(a1+a2)+(a3+a4)+…+(a99+a100)=2+2+2+…+2=100
故选B
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网