题目内容
已知函数f(n)=
且an=f(n)+f(n+1),则a1+a2+a3+…+a100等于( )
|
A.0 | B.100 | C.-100 | D.10200 |
∵an=f(n)+f(n+1)
∴由已知条件知,an=
即an=
∴an=(-1)n•(2n+1)
∴an+an+1=2(n是奇数)
∴a1+a2+a3+…+a100=(a1+a2)+(a3+a4)+…+(a99+a100)=2+2+2+…+2=100
故选B
∴由已知条件知,an=
|
即an=
|
∴an=(-1)n•(2n+1)
∴an+an+1=2(n是奇数)
∴a1+a2+a3+…+a100=(a1+a2)+(a3+a4)+…+(a99+a100)=2+2+2+…+2=100
故选B
练习册系列答案
相关题目