题目内容

设f(x)=x3+x2+x(x∈R),又若a∈R,则下列各式一定成立的是(  )
A、f(a)≤f(2a)B、f(a2)≥f(a)C、f(a2-1)>f(a)D、f(a2+1)>f(a)
分析:由f(x)=x3+x2+x(x∈R),求导得到f′(x)=3x2+2x+1=3(x+
1
3
2+
2
3
>0恒成立,进而有函数f(x)在定义域上是增函数,再根据函数单调性定义求解.
解答:解:∵f(x)=x3+x2+x(x∈R),
∴f′(x)=3x2+2x+1=3(x+
1
3
2+
2
3
>0恒成立,
∴函数f(x)在定义域上是增函数
又∵a2+1>a
∴f(a2+1)>f(a)
故选D
点评:本题主要考查函数单调性的证明及函数单调性定义的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网