ÌâÄ¿ÄÚÈÝ

£¨2013•ÉعØһģ£©Éèf£¨x£©ÔÚÇø¼äIÉÏÓж¨Ò壬Èô¶Ô?x1£¬x2¡ÊI£¬¶¼ÓÐf(
x1+x2
2
)¡Ý
f(x1)+f(x2)
2
£¬Ôò³Æf£¨x£©ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£»Èô¶Ô?x1£¬x2¡ÊI£¬¶¼ÓÐf(
x1+x2
2
)¡Ü
f(x1)+f(x2)
2
£¬Ôò³Æf£¨x£©ÊÇÇø¼äIµÄÏòÏÂ͹º¯Êý£¬ÓÐÏÂÁÐËĸöÅжϣº
¢ÙÈôf£¨x£©ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£¬Ôò-f£¨x£©ÔÚÇø¼äIµÄÏòÏÂ͹º¯Êý£»
¢ÚÈôf£¨x£©ºÍg£¨x£©¶¼ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£¬Ôòf£¨x£©+g£¨x£©ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£»
¢ÛÈôf£¨x£©ÔÚÇø¼äIµÄÏòÏÂ͹º¯Êý£¬ÇÒf£¨x£©¡Ù0£¬Ôò
1
f(x)
ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£»
¢ÜÈôf£¨x£©ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£¬?x1£¬x2£¬x3£¬x4¡ÊI£¬ÔòÓÐf£¨
x1+x2+x3+x4
4
£©¡Ý
f(x1)+f(x2)+f(x3)+f(x4)
4

ÆäÖÐÕýÈ·µÄ½áÂÛ¸öÊýÊÇ£¨¡¡¡¡£©
·ÖÎö£º¶ÔÓÚ¢Ù¢Ú¢ÜÖ±½ÓÀûÓú¯ÊýÊÇ¡°Í¹º¯Êý¡±µÄ¶¨Ò壬ͨ¹ý·ÅËõ·¨Ö¤Ã÷¼´¿É£»¶ÔÓÚ¢ÛÀûÓþٷ´ÀýµÄ·½·¨½áºÏͼÏ󷨼´¿É½øÐÐÅжϣ®
½â´ð£º½â£º¢ÙÈôf£¨x£©ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£¬Ôò¶Ô?x1£¬x2¡ÊI£¬¶¼ÓÐf(
x1+x2
2
)¡Ý
f(x1)+f(x2)
2
£¬
¡à-f(
x1+x2
2
)¡Ü
-f(x1)-f(x2)
2
£¬
¡à-f£¨x£©ÔÚÇø¼äIµÄÏòÏÂ͹º¯Êý£»ÕýÈ·£®
¢ÚÈôf£¨x£©ºÍg£¨x£©¶¼ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£¬Ôò¶Ô?x1£¬x2¡ÊI£¬¶¼ÓÐf(
x1+x2
2
)¡Ý
f(x1)+f(x2)
2
£¬
g(
x1+x2
2
)¡Ý
g(x1)+g(x2)
2
£¬Á½Ê½Ïà¼ÓµÃf(
x1+x2
2
)+g(
x1+x2
2
)¡Ý
f(x1)+f(x2)
2
+
g(x1)+g(x2)
2

¡àf£¨x£©+g£¨x£©ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£»ÕýÈ·£®
¢ÛÈôf£¨x£©ÔÚÇø¼äIµÄÏòÏÂ͹º¯Êý£¬ÇÒf£¨x£©¡Ù0£¬Ôò
1
f(x)
²»Ò»¶¨ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£»
Èçf£¨x£©=ex£¬
1
f(x)
=(
1
e
)x
£¬Èçͼ£¬

ËüÃǶ¼ÊÇÏòÏÂ͹º¯Êý£®¹Ê´í£®
¢ÜÈôf£¨x£©ÊÇÇø¼äIµÄÏòÉÏ͹º¯Êý£¬
?x1£¬x2£¬x3£¬x4¡ÊI£¬ÔòÓÐf£¨
x1+x2+x3+x4
4
£©=f£¨
x1+x2
2
+
x3+x4
2
2
£©¡Ý
f(
x1+x2
2
)+f(
x3+x4
2
)
2

¡Ý
f(x1)+f(x2)+f(x3)+f(x4)
4
£¬¹ÊÕýÈ·£®
ÆäÖÐÕýÈ·µÄ½áÂÛ¸öÊýÊÇ3£®
¹ÊÑ¡C£®
µãÆÀ£º±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃÒÔ¼°·ÅËõ·¨Ö¤Ã÷ÎÊÌâµÄ²½Ö裬ж¨ÒåµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâÓë½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø