题目内容
已知函数f(x)=ax+lnx,a∈R.
(I)当a=-1时,求f(x)的最大值;
(II)对f(x)图象上的任意不同两点P1(x1,x2),P(x2,y2)(0<x1<x2),证明f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平等;
(III)当a=
时,设正项数列{an}满足:an+1=f'(an)(n∈N*),若数列{a2n}是递减数列,求a1的取值范围.
(I)当a=-1时,求f(x)的最大值;
(II)对f(x)图象上的任意不同两点P1(x1,x2),P(x2,y2)(0<x1<x2),证明f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平等;
(III)当a=
3 |
2 |
(Ⅰ)当a=-1时,f(x)=-x+lnx,f′(x)=-1+
=
.
对于x∈(0,1),有f'(x)>0,∴f(x)在区间(0,1]上为增函数,
对于x∈(1,+∞),有f'(x)<0,∴f(x)在区间(1,+∞)上为减函数,.
∴fmax(x)=f(1)=-1;
(II)直线P1P2的斜率为 k=
=a+
;
由(1)知-x+lnx≤-1,当且仅当x=1时取等号,
∴-
+ln
<-1?ln
<
-1?lnx2-lnx1<
?
<
,
同理,由 -
+ln
<-1,可得
>
;
故P1P2的斜率 k∈(a+
,a+
),
又在x∈(x1,x2)上,f′(x)=a+
∈(a+
,a+
),
所以f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平行;
(III)f(x)=
x+lnx,f′(x)=
+
,∴an+1=
+
,
a3=
+
,a4=
+
=
+
=
<a2?2a22-3a2-2>0,
?(2a2+1)(a2-1)>0?a2>2?
+
>2?0<a1<2,
下面我们证明:当0<a1<2时,a2n+2<a2n,且a2n>2(n∈N+)
事实上,当n=1时,0<a1<2?a2=
+
>2,
a4-a2=
-a2=-
<0?a4<a2,结论成立.
若当n=k时结论成立,即a2k+2<a2k,且a2k>2,则
a2k+2=
+
>2?a2k+4=
+
>2,
a2k+4-a2k+2=
-a2k+2=-
<0
?a2k+4<a2k+2,
由上述证明可知,a1的取值范围是(0,2).
1 |
x |
-x +1 |
x |
对于x∈(0,1),有f'(x)>0,∴f(x)在区间(0,1]上为增函数,
对于x∈(1,+∞),有f'(x)<0,∴f(x)在区间(1,+∞)上为减函数,.
∴fmax(x)=f(1)=-1;
(II)直线P1P2的斜率为 k=
ax2+lnx2-ax1-lnx1 |
x2-x1 |
lnx2-lnx1 |
x2-x1 |
由(1)知-x+lnx≤-1,当且仅当x=1时取等号,
∴-
x2 |
x1 |
x2 |
x1 |
x2 |
x1 |
x2 |
x1 |
x2-x1 |
x1 |
lnx2-lnx1 |
x2-x1 |
1 |
x1 |
同理,由 -
x1 |
x2 |
x1 |
x2 |
lnx2-lnx1 |
x2-x1 |
1 |
x2 |
故P1P2的斜率 k∈(a+
1 |
x2 |
1 |
x1 |
又在x∈(x1,x2)上,f′(x)=a+
1 |
x |
1 |
x2 |
1 |
x1 |
所以f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平行;
(III)f(x)=
3 |
2 |
3 |
2 |
1 |
x |
3 |
2 |
1 |
an |
a3=
3 |
2 |
1 |
a2 |
3 |
2 |
1 |
a3 |
3 |
2 |
1 | ||||
|
13a2+6 |
2(3a2+2) |
?(2a2+1)(a2-1)>0?a2>2?
3 |
2 |
1 |
a1 |
下面我们证明:当0<a1<2时,a2n+2<a2n,且a2n>2(n∈N+)
事实上,当n=1时,0<a1<2?a2=
3 |
2 |
1 |
a1 |
a4-a2=
13a2+6 |
2(3a2+2) |
3(2a2+1)(a2-2) |
2(3a2+2) |
若当n=k时结论成立,即a2k+2<a2k,且a2k>2,则
a2k+2=
3 |
2 |
1 |
a2k |
3 |
2 |
1 |
a2k+2 |
a2k+4-a2k+2=
13a2k+2+6 |
2(3a2k+2+2) |
3(2a2k+2+1)(a2k+2-2) |
2(3a2k+2+2) |
?a2k+4<a2k+2,
由上述证明可知,a1的取值范围是(0,2).
练习册系列答案
相关题目