题目内容

设抛物线y=ax2(a0)与直线y=kx+b的两个交点的横坐标分别为x1x2,而x3是直线与x轴的交点的横坐标,那么x1x2x3满足的关系是( )

  Ax3=x1+x2

  Bx3=

  Cx1x2=(x1+x2)·x3

  Dx1x3=(x1+x3)·x2

答案:C
解析:

y=kx+b代入抛物线方程y=ax2

  得ax2-kx-b=0,令其根为x1x2

  则有D=k2+4ab0

  

  而直线y=kx+bx轴交点的横坐标x3=-

  经验证,有x1·x2=(x1+x2)·x3

  故选C


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网