题目内容
函数f(x)对任意的实数m、n有f(m+n)=f(m)+f(n),且当x>0时有f(x)>0.
(1)求证:f(x)在(-∞,+∞)上为增函数;
(2)若f(1)=1,解不等式f[log2(x2-x-2)]<2.
(1)证明见解析(2)不等式的解集为{x|-2<x<-1或2<x<3
解析:
(1)证明 设x2>x1,则x2-x1>0.
∵f(x2)-f(x1)=f(x2-x1+x1)-f(x1)=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)>0,
∴f(x2)>f(x1),f(x)在(-∞,+∞)上为增函数.
(2)解 ∵f(1)=1,∴2=1+1=f(1)+f(1)=f(2).
又f[log2(x2-x-2)]<2,∴f[log2(x2-x-2)]<f(2).
∴log2(x2-x-2)<2,于是∴
即-2<x<-1或2<x<3.∴原不等式的解集为{x|-2<x<-1或2<x<3}.
练习册系列答案
相关题目