题目内容

(2008•浦东新区二模)不等式组
x+2y≤2
x-y≥1
y≥0
表示的平面区域中点P(x,y)到直线x+3y=9距离的最小值是
2
10
3
2
10
3
分析:首先根据题意做出可行域,欲求区域D中的点到直线x+3y=9距离的最小值,由其几何意义为区域D的点A(
4
3
1
3
)到直线x+3y=9距离为所求,代入计算可得答案.
解答:解:如图可行域为阴影部分,
由其几何意义为区域D的点A(
4
3
1
3
)到直线x+3y=9距离,即为所求,
由点到直线的距离公式得:
d=
|
4
3
+ 3×
1
3
-9|
12+32
=
2
10
3

则区域D中的点到直线x+3y=9距离的最小值等于
2
10
3

故答案为:
2
10
3
点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网