题目内容

已知数列{an}的前n项和Sn+
an2
=3,n∈N*
,又bn是an与an+1的等差中项,求{bn}的前n项和Tn
分析:利用数列的递推关系式,求出首项,判断数列是等比数列,然后求解数列{bn}的前n项和Tn
解答:解:Sn+
an
2
=3,n∈N*
Sn=3-
an
2
,n∈N*
a1=S1=3-
a1
2
a1=2

当n≥2时an=Sn-Sn-1=(3-
an
2
)-(3-
an-1
2
)⇒an=
1
3
an-1

∴{an}是首项为2,公比为
1
3
的等比数列.
an=2(
1
3
)n-1,n∈N*⇒bn=
an+an+1
2
=
4
3
(
1
3
)n-1,n∈N*

Tn=
4
3
(1-
1
3n
)
1-
1
3
=2-
2
3n
,n∈N*
点评:本题考查等比数列求和方法的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网