题目内容
已知二次函数f(x)=ax2+bx+c的图像的顶点坐标是(,-),且f(3)=2
(Ⅰ)求y=f(x)的表达式,并求出f(1),f(2)的值;
(Ⅱ)数列{an},{bn},若对任意的实数x都满足g(x)·f(x)+anx+bn=xn+1,n∈N*,其中g(x)是定义在实数R上的一个函数,求数列{an}、{bn}的通项公式;
(Ⅲ)设圆Cn:(x-an)2+(y-bn)2=,若圆Cn与圆Cn+1外切,{rn}是各项都是正数的等比数列,记Sn是前n个圆的面积之和,求.(n∈N*)
答案:
解析:
解析:
解:(Ⅰ)由已知得f(x)=a(x-)2-,a≠0,∴f(3)=a(3-)2-=2 ∴a=1 ∴f(x)=x2-3x+2,x∈R f(1)=0,f(2)=0 (Ⅱ)g(1)·f(1)+an+bn=1n+1 即an+bn=1 ① g(2)·f(2)+2an+bn=2n+1 即2an+bn=2n+1 ② 由①②得an=2n+1-1,bn=2-2n+1, (Ⅲ)|Cn+1Cn|==·2n+1,设数列{rn}的公比为q,则rn+rn+1=rn(1+q)=|Cn+1Cn|=·2n+1 即rn(1+q)=·2n+1 ∴rn+1(1+q)=·2n+2 ∴=2 ∴rn=·2n+1 ∴=·4n Sn=π(+++…+)=·(41+42+…+4n)=·=(4n-1) ∴=== |
练习册系列答案
相关题目