题目内容

已知二次函数f(x)=ax2+bx+c的图像的顶点坐标是(,-),且f(3)=2

(Ⅰ)求y=f(x)的表达式,并求出f(1),f(2)的值;

(Ⅱ)数列{an},{bn},若对任意的实数x都满足g(x)·f(x)+anx+bn=xn+1,n∈N*,其中g(x)是定义在实数R上的一个函数,求数列{an}、{bn}的通项公式;

(Ⅲ)设圆Cn:(x-an)2+(y-bn)2,若圆Cn与圆Cn+1外切,{rn}是各项都是正数的等比数列,记Sn是前n个圆的面积之和,求.(n∈N*)

答案:
解析:

  解:(Ⅰ)由已知得f(x)=a(x- )2- ,a≠0,∴f(3)=a(3- )2- =2

  解:(Ⅰ)由已知得f(x)=a(x-)2,a≠0,∴f(3)=a(3-)2=2

  ∴a=1  ∴f(x)=x2-3x+2,x∈R  f(1)=0,f(2)=0

  (Ⅱ)g(1)·f(1)+an+bn=1n+1  即an+bn=1  ①

  g(2)·f(2)+2an+bn=2n+1  即2an+bn=2n+1  ②

  由①②得an=2n+1-1,bn=2-2n+1

  (Ⅲ)|Cn+1Cn|=·2n+1,设数列{rn}的公比为q,则rn+rn+1=rn(1+q)=|Cn+1Cn|=·2n+1  即rn(1+q)=·2n+1

  ∴rn+1(1+q)=·2n+2  ∴=2  ∴rn·2n+1  ∴·4n

  Sn=π(+…+)=·(41+42+…+4n)=·(4n-1)

  ∴


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网