题目内容
【题目】已知f(x),g(x)分别为定义在R上的奇函数和偶函数,且f(x)﹣g(x)=x2﹣x+3,则f(1)+g(1)=( )
A.5
B.﹣5
C.3
D.﹣3
【答案】B
【解析】解:由题意知f(﹣1)=﹣f(1),g(﹣1)=g(1),所以f(﹣1)﹣g(﹣1)=﹣[f(1)+g(1)]=5,所以f(1)+g(1)=﹣5.
故选B.
【考点精析】认真审题,首先需要了解函数奇偶性的性质(在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇).
练习册系列答案
相关题目