题目内容
6、关于直线m,n与平面α,β,有以下四个命题:
①若m∥α,n∥β且α∥β,则m∥n;
②若m⊥α,n⊥β且α⊥β,则m⊥n;
③若m⊥α,n∥β且α∥β,则m⊥n;
④若m∥α,n⊥β且α⊥β,则m∥n;
其中真命题的序号是( )
①若m∥α,n∥β且α∥β,则m∥n;
②若m⊥α,n⊥β且α⊥β,则m⊥n;
③若m⊥α,n∥β且α∥β,则m⊥n;
④若m∥α,n⊥β且α⊥β,则m∥n;
其中真命题的序号是( )
分析:根据线面垂直的性质定理和线面平行的性质定理,对四个结论逐一进行分析,易得到答案.
解答:解:若m∥α,n∥β且α∥β,则m,n可能平行也可能异面,也可以相交,故①错误;
若m⊥α,n⊥β且α⊥β,则m,n一定垂直,故②正确;
若m⊥α,n∥β且α∥β,则m,n一定垂直,故③正确;
若m∥α,n⊥β且α⊥β,则m,n可能相交、平行也可能异面,故④错误
故选D.
若m⊥α,n⊥β且α⊥β,则m,n一定垂直,故②正确;
若m⊥α,n∥β且α∥β,则m,n一定垂直,故③正确;
若m∥α,n⊥β且α⊥β,则m,n可能相交、平行也可能异面,故④错误
故选D.
点评:判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a?α,b?α,a∥b?a∥α);③利用面面平行的性质定理(α∥β,a?α?a∥β);④利用面面平行的性质(α∥β,a?α,a?,a∥α??a∥β).线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.垂直问题的证明,其一般规律是“由已知想性质,由求证想判定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来.
练习册系列答案
相关题目