题目内容

设G、M分别为不等边△ABC的重心与外心,A(-1,0)、B(1,0),GMAB.
(1)求点C的轨迹方程;
(2)设点C的轨迹为曲线E,是否存在直线l,使l过点(0.1)并与曲线E交于P、Q两点,且满足
OP
OQ
=-2
?若存在,求出直线l的方程,若不存在,说明理由.
注:三角形的重心的概念和性质如下:设△ABC的重心,且有
GD
GC
=
GE
GA
=
GF
GB
=
1
2
可设C点的坐标为(x,y).
由重心坐标的公式,可得G(
1
3
x,
1
3
y

外心M在AB的垂直平分线上,显然AB所在直线为y=0,外心就落在y轴上,横坐标为零;
设外心坐标M(0,b),由GMAB可知
1
3
y=b

那么就确定了外心坐标M(0,
1
3
y

由外心定义,CM=AM=BM,AM已经等于Bm了,只需要令CM=AM或者CM=BM即可
不妨CM=AM,
x2+(y-
1
3
y)
2
=(-1-0)2+(
1
3
y)
2

整理可得点C的轨迹方程为 x2+
y2
3
=1(xy≠0)

(II)假设存在直线l满足条件,设直线l方程为y=kx+1,
y=kx+1
x2+
y2
3
=1
消去x,得(3+k2)x2+2kx-2=0    
∵直线l与曲线E并于P、Q两点,∴△=4k2+8(2+k2)>0
设P(x1,y1),Q(x2,y2),则
x1+x2=-
2k
3+k2
x1x2=-
2
3+k2
.

OP
OQ
=-2

∴x1x2+y1y2=-2,即x1x2+(kx1+1)(kx2+1)=-2.
(1+k2)x1x2+k(x1+x2)+3=0,(1+k2(-
2
3+k2
)+k(-
2k
3+k2
)+3=0

解得k2=7,∴k=±
7

故存在直线l:y=±
7
+1,使得
OP
OQ
=-2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网