题目内容
13.抛物线x2=4y的准线方程是( )A. | y=-1 | B. | y=-2 | C. | x=-1 | D. | x=-2 |
分析 由x2=2py(p>0)的准线方程为y=-$\frac{p}{2}$,则抛物线x2=4y的准线方程即可得到.
解答 解:由x2=2py(p>0)的准线方程为y=-$\frac{p}{2}$,
则抛物线x2=4y的准线方程是y=-1,
故选A.
点评 本题考查抛物线的方程和性质,主要考查抛物线的准线方程的求法,属于基础题.
练习册系列答案
相关题目
1.已知F是抛物线y=$\frac{1}{4}$x2的焦点,P是该抛物线上的动点,则线段PF中点的轨迹方程是( )
A. | x2=2y-1 | B. | x2=2y-$\frac{1}{16}$ | C. | x2=y-$\frac{1}{2}$ | D. | x2=2y-2 |
8.已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,过抛物线上一点P作PM垂直l于M,若∠PFM=60°,则△PFM的面积为( )
A. | p2 | B. | $\sqrt{3}$p2 | C. | 2p2 | D. | 2$\sqrt{3}$p2 |
5.已知M(a,2)是抛物线y2=2x上的一定点,直线MP、MQ的倾斜角之和为π,且分别与抛物线交于P、Q两点,则直线PQ的斜率为( )
A. | -$\frac{1}{4}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
2.已知函数f(x)=$\left\{\begin{array}{l}{{k}^{2}+2k(1-{a}^{2}),x≥0}\\{{x}^{2}-2(1-{a}^{2})x+(a-4)^{2},x<0}\end{array}\right.$,a∈R,若对任意非零实数x1,存在非零实数x2(x1≠x2),使得f(x2)=f(x1),则实数k的最小值( )
A. | $\frac{15}{2}$ | B. | $-\frac{15}{2}$ | C. | $-\frac{2}{3}$ | D. | $\frac{2}{3}$ |
3.单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )
A. | 该几何体体积为$\frac{5}{6}$ | B. | 该几何体体积可能为$\frac{2}{3}$ | ||
C. | 该几何体表面积应为$\frac{9}{2}$+$\frac{\sqrt{3}}{2}$ | D. | 该几何体唯一 |