题目内容
如图,AB是圆的直径,PA垂直圆所在的平面,C是圆周上的一点.
(1)求证:平面PAC⊥平面PBC;(6分)
(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.(6分)
(1)证明 由AB是圆的直径,得AC⊥BC,
由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.
又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,
所以BC⊥平面PAC.
因为BC⊂平面PBC,
所以平面PBC⊥平面PAC.(5分)
(2) 过C作CM∥AP,则CM⊥平面ABC.
如图,以点C为坐标原点,分别以直线CB、CA、CM为x轴,y轴,z轴建立空间直角坐标系.
因为AB=2,AC=1,所以BC=.
因为PA=1,所以A(0,1,0),B(,0,0),P(0,1,1).
故C=(,0,0),C=(0,1,1).
设平面BCP的法向量为n1=(x,y,z),则所以
不妨令y=1,则n1=(0,1,-1).
因为A=(0,0,1),A=(,-1,0),
设平面ABP的法向量为n2=(x,y,z),
则
所以
不妨令x=1,则n2=(1,,0).
于是cos〈n1,n2〉==.
所以由题意可知二面角CPBA的余弦值为.
练习册系列答案
相关题目