题目内容

函数f(x)=x3-6x2的定义域为[-2,t],设f(-2)=m,f(t)=n,f′(x)是f(x)的导数.
(Ⅰ)求证:n≥m;
(Ⅱ)确定t的范围使函数f(x)在[-2,t]上是单调函数;
(Ⅲ)求证:对于任意的t>-2,总存在x0∈(-2,t),满足f(x0)=
n-m
t+2
;并确定这样的x0的个数.
(Ⅰ)设h(t)=n-m,则h(t)=t3-6t2+32=(t+2)(t-4)2≥0,所以n≥m.
(Ⅱ)f(x)=3x2-12,令f(x)=0,得x1=0,x2=4.
当t∈(-2,0)时,x∈[-2,t]时,f′(x)>0,f(x)是递增函数;当t=0时,显然f(x)在[-2,0]也是递增函数.
∵x=0是f(x)的一个极值点,∴当t>0时,函数f(x)在[-2,t]上不是单调函数.∴当t∈(-2,0]时,函数f(x)在[-2,t]上是单调函数.
(Ⅲ)由(1),知n-m=(t+2)(t-4)2,∴
n-m
t+2
=(t-4)2

又∵f′(x)=3x2-12,我们只要证明方程3x2-12x-(t-4)2=0在(-2,t)内有解即可.
记g(x)=3x2-12x-(t-4)2,则g(-2)=36-(t-4)2=-(t+2)(t-10),g(t)=3t2-12t-(t-4)2=2(t+2)(t-4),g(-2)=36-(t-4)2>0,g(t)=3t2-12t-(t-4)2>0,
∴g(-2)•g(t)=-2(t+2)2(t-4)(t-10).
①当t∈(-2,4)∪(10,+∞)时,g(-2)•g(t)=-2(t+2)2(t-4)(t-10)<0,方程(*)在(-2,t)内有且只有一解;
②当t∈(4,10)时,g(-2)=-(t+2)(t-10)>0,g(t)=2(t+2)(t-4)>0,又g(2)=-12-(t-4)2<0,∴方程(*)在(-2,2),(2,t)内分别各有一解,方程(*)在(-2,t)内两解;
③当t=4时,方程g(x)=3x2-12x=0在(-2,4)内有且只有一解x=0;
④当t=10时,方程g(x)=3x2-12x-36=3(x+2)(x-6)=0在(-2,10)内有且只有一解x=6.
综上,对于任意的t>-2,总存在x0∈(-2,t),满足f(x0)=
n-m
t+2

当t∈(-2,4]∪[10,+∞)时,满足f(x0)=
n-m
t+2
,x0∈(-2,t)的x0有且只有一个;
当t∈(4,10)时,满足f(x0)=
n-m
t+2
,x0∈(-2,t)的x0恰有两个.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网