题目内容

已知锐角△ABC中内角A、B、C的对边分别为a、b、c,且sin2A+sin2B=sin2C+sinAsinB.
(1)求角C的值;
(2)设函数f(x)=sin(ωx-
π6
)-cosωx(ω>0)
,且f(x)图象上相邻两最高点间的距离为π,求f(A)的取值范围.
分析:(1)先根据正弦定理找到角与边的关系,然后再用余弦定理可求出角C的余弦值,从而得到答案;
(2)先确定函数解析式,再确定角的范围,利用三角函数图象的性质,即可得到结论.
解答:解:(1)∵sin2A+sin2B=sin2C+sinAsinB
∴由正弦定理化简已知的等式得:a2+b2=c2+ab,即a2+b2-c2=ab,
∴cosC=
a2+b2-c2
2ab
=
1
2

∵0<C<
π
2
,∴C=
π
3

(2)f(x)=sin(ωx-
π
6
)-cosωx
=
3
sin(ωx-
π
3
)

∵f(x)图象上相邻两最高点间的距离为π,
ω
,∴ω=2,∴f(A)=
3
sin(2A-
π
3
)

∵C=
π
3
,B=
3
-A
,0<A<
π
2
,0<B<
π
2

π
6
<A<
π
2
,∴0<2A-
π
3
3

0<sin(2A-
π
3
)≤1

∴0<f(A)≤
3
点评:本题考查正弦定理的运用,考查三角函数图象的性质,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网