题目内容
数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N*).若b3=-2,b10=12,求a8的值
试题分析:先利用等差数列的通项公式分别表示出b3和b10,联立方程求得b1和d的值,进而利用叠加法求得b1+b2+…+bn=an+1-a1,最后利用等差数列的求和公式求得所求先求 再递推或叠加求
解:依题意可知b1+2d=-2,b1+9d=12,解得b1=-6,d=2,∵bn=an+1-an,∴b1+b2+…+bn=an+1-a1,,∴a8=b1+b2+…+b7+3= 。
点评:本题主要考查了数列的递推式,以及对数列基础知识的熟练掌握,同时考查了运算求解的能力,属于基础题.
练习册系列答案
相关题目