题目内容
气象部门提供了某地今年六月份(30天)的日最高气温的统计表如下:
日最高气温t (单位:℃) | t22℃ | 22℃< t28℃ | 28℃< t 32℃ | ℃ |
天数 | 6 | 12 |
(Ⅰ) 若把频率看作概率,求,的值;
(Ⅱ) 把日最高气温高于32℃称为本地区的 “高温天气”,根据已知条件完成下面列联表,并据此你是否有95%的把握认为本地区的“高温天气”与西瓜“旺销”有关?说明理由.
| 高温天气 | 非高温天气 | 合计 |
旺销 | 1 | | |
不旺销 | | 6 | |
合计 | | | |
0.10 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(Ⅰ)9,3;(Ⅱ)没有95%的把握认为本地区的“高温天气”与西瓜 “旺销”有关.
解析试题分析:(Ⅰ)把频率看作概率,,根据频率和为1,可求得,在由皮书等于频率样本总数,便求得 , 的值;(Ⅱ)利用求出的观测值,把的值与临界值比较,如下表:确定与有关系的程度或无关系. 学校为了使运动员顺利参加运动会,招募了8名男志愿者和12名女志愿者,这20名志愿者的身高如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”. 小王经营一家面包店,每天从生产商处订购一种品牌现烤面包出售.已知每卖出一个现烤面包可获利10元,若当天卖不完,则未卖出的现烤面包因过期每个亏损5元.经统计,得到在某月(30天)中,小王每天售出的现烤面包个数及天数如下表:
若,则有95℅的把握说明两个事件有关; P(k2>k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
若,则有99℅的把握说明两个事件有关;
若,则没有理由认为两个事件有关.
试题解析:(Ⅰ)由已知的:,
∴ ,
∴ ,. 6分
(Ⅱ) 高温天气 非高温天气 合 计 旺销<
(Ⅰ)用分层抽样的方法从“高个子”和“非高个子”中抽取5人,如果从这5人中随机选2人,那么至少有1人是“高个子”的概率是多少?男 女 8 16 5 8 9 8 7 6 17 2 3 5 5 6 7 4 2 18 0 1 2 1 19 0
(Ⅱ)若从所有“高个子”中随机选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望.
试依据以频率估计概率的统计思想,解答下列问题:售出个数 10 11 12 13 14 15 天数 3 3 3 6 9 6
(Ⅰ)计算小王某天售出该现烤面包超过13个的概率;
(Ⅱ)若在今后的连续5天中,售出该现烤面包超过13个的天数大于3天,则小王决定增加订购量. 试求小王增加订购量的概率.
(Ⅲ)若小王每天订购14个该现烤面包,求其一天出售该现烤面包所获利润的分布列和数学期望.