ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=Acos£¨¦Øx+¦Õ£©£¨x¡ÊR£©µÄͼÏóµÄÒ»²¿·ÖÈçͼËùʾ£¬ÆäA£¾0£¬¦Ø£¾0£¬|¦Õ|£¼
£¬ÎªÁ˵õ½º¯f£¨x£©µÄͼÏó£¬Ö»Òª½«º¯Êýg£¨x£©=2cos2
-2sin2
£¨x¡ÊR£©µÄͼÏóÉÏËùÓеĵ㣨¡¡¡¡£©
¦Ð |
2 |
x |
2 |
x |
2 |
·ÖÎö£ºÓÉ
T=
¦Ð£¬¿ÉÇóµÃT£¬´Ó¶ø¿ÉÇóµÃ¦Ø£¬Óɦؕ£¨-
£©+¦Õ=-
+2k¦Ð£¨k¡ÊZ£©¿ÉÇóµÃ¦Õ£¬½áºÏÓÕµ¼¹«Ê½ÓëƽÒÆ֪ʶ¼´¿ÉµÃµ½´ð°¸£®
3 |
4 |
3 |
4 |
5¦Ð |
12 |
¦Ð |
2 |
½â´ð£º½â£ºÓÉf£¨x£©=cos£¨¦Øx+¦Õ£©£¨x¡ÊR£©µÄͼÏó¿ÉµÃ£º
T=
-£¨-
£©=
¦Ð£¬
¡àT=
=¦Ð£¬
¡à¦Ø=2£»ÓÖ2¡Á£¨-
£©+¦Õ=-
+2k¦Ð£¨k¡ÊZ£©£¬
¡à¦Õ=2k¦Ð+
£¨k¡ÊZ£©£¬
²»·ÁÁîk=0£¬¿ÉµÃ¦Õ=
£®
¡àf£¨x£©=cos£¨2x+
£©=cos[2£¨x+
£©]£»
ÓÖg£¨x£©=cos2
-sin2
=cosx
¡àÖ»Òª½«º¯Êýg£¨x£©=cosxµÄͼÏóÉÏËùÓеĵãÏò×óƽÒÆ
¸öµ¥Î»³¤¶È£¬µÃµ½h£¨x£©=cos£¨x+
£©£¬
ÔÙ°Ñh£¨x£©=cos£¨x+
£©¸÷µãµÄºá×ø±êËõ¶Ìµ½ÔÀ´µÄ
±¶£¬×Ý×ø±ê²»±ä£¬¼´¿ÉµÃµ½f£¨x£©=cos£¨2x+
£©µÄͼÏó£®
¹ÊÑ¡C£®
3 |
4 |
¦Ð |
3 |
5¦Ð |
12 |
3 |
4 |
¡àT=
2¦Ð |
¦Ø |
¡à¦Ø=2£»ÓÖ2¡Á£¨-
5¦Ð |
12 |
¦Ð |
2 |
¡à¦Õ=2k¦Ð+
¦Ð |
3 |
²»·ÁÁîk=0£¬¿ÉµÃ¦Õ=
¦Ð |
3 |
¡àf£¨x£©=cos£¨2x+
¦Ð |
3 |
¦Ð |
6 |
ÓÖg£¨x£©=cos2
x |
2 |
x |
2 |
¡àÖ»Òª½«º¯Êýg£¨x£©=cosxµÄͼÏóÉÏËùÓеĵãÏò×óƽÒÆ
¦Ð |
3 |
¦Ð |
3 |
ÔÙ°Ñh£¨x£©=cos£¨x+
¦Ð |
3 |
1 |
2 |
¦Ð |
3 |
¹ÊÑ¡C£®
µãÆÀ£º±¾Ì⿼²éº¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»£¬ÇóµÃf£¨x£©=cos£¨¦Øx+¦Õ£©£¨x¡ÊR£©ÖеĦأ¬¦ÕÊǹؼü£¬Ò²ÊÇÄѵ㣬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿