题目内容
(本小题共14分)已知函数,数列是公差为d的等差数列,是公比为q()的等比数列.若 (Ⅰ)求数列,的通项公式; (Ⅱ)设数列对任意自然数n均有,求 的值.
解析
(08年北京卷文)(本小题共14分)
已知的顶点在椭圆上,在直线上,且.
(Ⅰ)当边通过坐标原点时,求的长及的面积;
(Ⅱ)当,且斜边的长最大时,求所在直线的方程.
(本小题共14分)
已知双曲线的离心率为,右准线方程为
(Ⅰ)求双曲线的方程;(Ⅱ)设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值..
(本小题共14分)已知,动点到定点的距离比到定直线的距离小.(I)求动点的轨迹的方程;(Ⅱ)设是轨迹上异于原点的两个不同点,,求面积的最小值;(Ⅲ)在轨迹上是否存在两点关于直线对称?若存在,求出直线 的方程,若不存在,说明理由.
((本小题共14分)已知椭圆.过点(m,0)作圆的切线l交椭圆G于A,B两点.(I)求椭圆G的焦点坐标和离心率;(II)将表示为m的函数,并求的最大值.
已知点,,动点P满足,记动点P的轨迹为W.
(Ⅰ)求W的方程;
(Ⅱ)直线与曲线W交于不同的两点C,D,若存在点,使得成立,求实数m的取值范围.