题目内容
(08年北京卷文)(本小题共14分)
已知的顶点在椭圆上,在直线上,且.
(Ⅰ)当边通过坐标原点时,求的长及的面积;
(Ⅱ)当,且斜边的长最大时,求所在直线的方程.
解:(Ⅰ)因为,且边通过点,所以所在直线的方程为.
设两点坐标分别为.
由 得.
所以.
又因为边上的高等于原点到直线的距离.
所以,.
(Ⅱ)设所在直线的方程为,
由得.
因为在椭圆上,
所以.
设两点坐标分别为,
则,,
所以.
又因为的长等于点到直线的距离,即.
所以.
所以当时,边最长,(这时)
此时所在直线的方程为.
【高考考点】直线与圆锥曲线的位置关系
【易错提醒】解析几何的综合题在高考中的“综合程度”往往比较高,且计算量常常较大,因此平时复习时要注意其深难度,同时注意加强计算能力的培养
练习册系列答案
相关题目