题目内容

已知向量
a
=(sinα
-
1
2
)
b
=(1
,2cosα),
a
b
=
1
5
α∈(0,
π
2
)

(1)求sin2α及sinα的值;
(2)设函数f(x)=5sin(-2x+
π
2
+α)+2cos2x
(x∈[
π
24
π
2
])
,求x为何值时,f(x)取得最大值,最大值是多少,并求f(x)的单调增区间.
(1)∵
a
b
=sinα-cosα=
1
5

∴(sinα-cosα)2=1-2inαcosα=1-sin2α=
1
25

∴sin2α=
24
25
(2分)
∵(sinα+cosα)2=1+sin2α=
49
25

sinα+cosα=
7
5

sinα=
3
5
,cosα=
4
5
(5分)
(2)∵f(x)=5cos(2x-α)+1+cos2x
=5(cos2xcosα+sin2xsinα)+cos2x+1
=5(
3
5
cos2x+
4
5
sin2x
)+cos2x+1
=4cos2x+4sin2x+1
=4
2
sin(2x+
π
4
)+1(8分)
π
24
≤x≤
π
2

π
3
≤2x+
π
4
4

x=
π
24
时,f(x)max=f(
π
24
)
=1+2
6
(10分)
要使得函数y=f(x)单调递增
-
1
2
π+2kπ≤2x+
π
4
≤ 2kπ+
1
2
π

-
8
+kπ≤x≤
π
8
+kπ
(k∈Z)
x∈[
π
24
π
2
]

∴y=f(x)的单调递增区间为[
π
24
π
8
](12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网