题目内容
已知函数f(x)=x2+x.(1)数列{an}满足a1>0,an+1=f'(an),若
1 |
1+a1 |
1 |
1+a2 |
1 |
1+an |
1 |
2 |
(2)数列{bn}满足b1=1,bn+1=f(bn),n∈N+,记Cn=
1 |
1+bn |
T1 |
S1+T1 |
T2 |
S2+T2 |
Tn |
Sn+Tn |
7 |
10 |
分析:(1)根据题意得到an+1=2an+1,利用构造新数列的方法求出an+1=(a1+1)2n-1,进而得到
=
(
)n-1,再求和整理可得a1>3-
即可得到答案.
(2)由bn+1=bn(bn+1)即可得到Cn=
=
,进而得到Tn=
,SK=1-
,利用放缩法得到
<
,进一步利用放缩法得到
=
<
+
+
+
+…+
,即可得到答案.
1 |
1+an |
1 |
1+a1 |
1 |
2 |
1 |
2n-2 |
(2)由bn+1=bn(bn+1)即可得到Cn=
1 |
1+bn |
bn |
bn+1 |
b1 |
bn+1 |
1 |
bk+1 |
1 |
bk+1 |
1 |
bk2 |
n |
k=1 |
Tk |
Sk+Tk |
n |
k=1 |
1 |
bk+1 |
1 |
2 |
1 |
6 |
1 |
62 |
1 |
64 |
1 |
62n-2 |
解答:解:(1)由题意可得:函数f(x)=x2+x,
所以f′(x)=2x+1,
所以an+1=2an+1,即an+1+1=2(an+1),
所以{an+1}为等比数列,并且an+1=(a1+1)2n-1
所以
=
(
)n-1
即有
=
(1+
+
+…+
)=
<
对任意n∈N+恒成立,
即有a1>3-
对任意n∈N+恒成立,
故a1≥3.
(2)由题意可得:函数f(x)=x2+x,
所以bn+1=f(bn)=bn(bn+1)
所以Cn=
=
所以Tn=
•
…
=
,
又由bn+1=bn(bn+1)得
=
-
,
所以Cn=
-
,SK=1-
,
因为b1=1,bk+1=bk(bk+1),所以bk+1>bk2,即有
<
又因为b1=1,b2=2,b3=6,
所以
=
<
+
+
+
+…+
<
+
=
.
所以f′(x)=2x+1,
所以an+1=2an+1,即an+1+1=2(an+1),
所以{an+1}为等比数列,并且an+1=(a1+1)2n-1
所以
1 |
1+an |
1 |
1+a1 |
1 |
2 |
即有
n |
i=1 |
1 |
1+ai |
1 |
1+a1 |
1 |
2 |
1 |
22 |
1 |
2n-1 |
2-
| ||
1+a1 |
1 |
2 |
即有a1>3-
1 |
2n-2 |
故a1≥3.
(2)由题意可得:函数f(x)=x2+x,
所以bn+1=f(bn)=bn(bn+1)
所以Cn=
1 |
1+bn |
bn |
bn+1 |
所以Tn=
b1 |
b2 |
b2 |
b3 |
bn |
bn+1 |
b1 |
bn+1 |
又由bn+1=bn(bn+1)得
1 |
bn+1 |
1 |
bn |
1 |
bn+1 |
所以Cn=
1 |
bn |
1 |
bn+1 |
1 |
bk+1 |
因为b1=1,bk+1=bk(bk+1),所以bk+1>bk2,即有
1 |
bk+1 |
1 |
bk2 |
又因为b1=1,b2=2,b3=6,
所以
n |
k=1 |
Tk |
Sk+Tk |
n |
k=1 |
1 |
bk+1 |
1 |
2 |
1 |
6 |
1 |
62 |
1 |
64 |
1 |
62n-2 |
1 |
2 |
| ||
1-
|
7 |
10 |
点评:解决此类问题的关键是数列掌握求数列通项与数列求和的方法,而在证明不等式或者证明不等式恒成立等问题时最常用的方法是放缩法.
练习册系列答案
相关题目
已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
)的部分图象如图所示,则f(x)的解析式是( )
π |
2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|