题目内容

如图所示,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是
3
,D是AC的中点.
(Ⅰ)求证:B1C平面A1BD;
(Ⅱ)求二面角A1-BD-A的大小;
(Ⅲ)求点A到平面A1BD的距离.
(Ⅰ)证明:设AB1与A1B相交于点P,连接PD,
则P为AB1中点,
∵D为AC中点,
∴PDB1C.
又∵PD?平面A1BD,
∴B1C平面A1BD.…(4分)
(Ⅱ)解法一:由正三棱柱ABC-A1B1C1中D是AC的中点,
知BD⊥AC,
又∵平面AA1C1C⊥平面ABC,
∴BD⊥平面AA1C1C,∴BD⊥A1D,
故∠A1DA为二面角A1-BD-A的平面角,
又AD⊥A1A,A1A=
3
,AD=1,
∴∠A1DA=60°,即二面角A1-BD-A的大小为60°.…(8分)
(Ⅱ)解法二:如图建立空间直角坐标系,
则D(0,0,0),A(1,0,0),A1(1,0,
3
),
B(0,
3
,0),B1(0,
3
3
),
A1B
=(-1,
3
,-
3
),
A1D
=(-1,0,-
3
),
设平面A1BD的法向量为
n
=(x,y,z),
n
A1B
=-x+
3
y-
3
z=0

n
A1D
=-x-
3
z=0

则有
x=-
3
z
y=0
,令z=1,得
n
=(-
3
,0,1)
由题意,知
AA1
=(0,0,
3
)是平面ABD的一个法向量.
n
AA1
所成角为θ,
cosθ=
n•
AA1
|n|•|
AA1
|
=
1
2
,∴θ=
π
3

∴二面角A1-BD-A的大小是
π
3
…(8分)
(Ⅲ)解法一:由(Ⅱ)知BD⊥AC、BD⊥A1D,
设点A到平面A1BD的距离为d,
VA1-ABD=
1
3
S△ABDA1A=VA-A1BD=
1
3
SA1BD•d

1
3
S△ABDA1A=
1
3
×
1
2
×1×
3
×
3

=
1
3
SA1BD•d=
1
3
×
1
2
×
3
×
12+(
3
)
2
×d

解得:d=
3
2

即点A到平面A1BD的距离为d=
3
2
.…(12分)
(Ⅲ)解法二:由(Ⅱ)已知,
DA
=(1,0,0),
n
=(-
3
,0,1)
d=
|
DA
•n|
|n|
=
3
2

即点A到平面A1BD的距离为d=
3
2
.…(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网