题目内容
【题目】在△ABC中,角A,B,C的对边分别是a,b,c,已知
(1)求的值;
(2)若,求边c的值.
【答案】(1);(2)或
【解析】
(1)利用正弦定理化简已知的等式,再利用两角和与差的正弦函数公式及诱导公式化简,并根据sinA的值不为0,即可求出cosA的值;
(2)由第一问求出的cosA的值及A的范围,利用特殊角的三角函数值求出A的度数,进而得出B+C的度数,用B表示出C,代入已知的等式中,利用两角和与差的余弦函数公式化简,整理后再利用两角和与差的正弦函数公式化简,求出sin(B+)的值,由A的度数求出B+的范围,利用特殊角的三角函数值得出B的度数,根据锐角三角函数定义即可求出c的值.
(1)由及正弦定理得
即
又所以有即
而,所以
(2)由及0<A<,得A= 因此
由得
即,即得
由知于是或
所以,或
若则在直角△ABC中,,解得
若在直角△ABC中,解得
练习册系列答案
相关题目