ÌâÄ¿ÄÚÈÝ
Èôº¯Êýf(x)Âú×ãÏÂÁÐÌõ¼þ£ºÔÚ¶¨ÒåÓòÄÚ´æÔÚx0£¬Ê¹µÃf(x0£«1)£½f(x0)£«f(1)³ÉÁ¢£¬Ôò³Æº¯Êýf(x)¾ßÓÐÐÔÖÊM£»·´Ö®£¬Èôx0²»´æÔÚ£¬Ôò³Æº¯Êýf(x)²»¾ßÓÐÐÔÖÊM£®
(¢ñ)Ö¤Ã÷£ºº¯Êýf(x)£½2x¾ßÓÐÐÔÖÊM£¬²¢Çó³ö¶ÔÓ¦µÄx0µÄÖµ£»
(¢ò)ÒÑÖªº¯Êýh(x)£½lg¾ßÓÐÐÔÖÊM£¬ÇóaµÄÈ¡Öµ·¶Î§£»
(¢ó)ÊÔ̽¾¿ÐÎÈç¢Ùy£½kx£«b(k¡Ù0)¡¢¢Úy£½ax2£«bx£«c(a¡Ù0)¡¢¢Ûy£½(k¡Ù0)¡¢¢Üy£½ax(a£¾0ÇÒa¡Ù1)¡¢¢Ýy£½logax(a£¾0ÇÒa¡Ù1)µÄº¯Êý£¬Ö¸³öÄÄЩº¯ÊýÒ»¶¨¾ßÓÐÐÔÖÊM£¿²¢¼ÓÒÔÖ¤Ã÷£®
´ð°¸£º
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªº¯Êýf£¨x£©ÎªRÉϵÄÁ¬Ðøº¯ÊýÇÒ´æÔÚ·´º¯Êýf-1£¨x£©£¬Èôº¯Êýf£¨x£©Âú×ãÏÂ±í£º
ÄÇô£¬²»µÈʽ|f-1£¨x-1£©|£¼2µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
ÄÇô£¬²»µÈʽ|f-1£¨x-1£©|£¼2µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A¡¢{x|
| ||
B¡¢{x|
| ||
C¡¢{x|1£¼x£¼2} | ||
D¡¢{x|1£¼x£¼5} |
Èôy=f(x)Âú×ãϱí:
x | (-¡Þ,-1) | -1 | (-1,0) | 0 | (0,1) | 1 | (1,+¡Þ) |
y¡ä | - | 0 | + | 0 | - | 0 | + |
y | ¨K | ¼«Ð¡ | ¨J | ¼«´ó | ¨K | ¼«Ð¡ | ¨J |
д³öÒ»¸öÂú×ãÉϱíµÄº¯Êý___________.