题目内容

(2013•杭州二模)设P为函数f(x)=sin(πx)的图象上的一个最高点,Q为函数g(x)=cos(πx)的图象上的一个最低点,则|PQ|最小值是(  )
分析:分别令f(x)=1,g(x)=-1,可求得P、Q点的坐标,再用两点间距离公式可把|PQ|表示出来,由二次函数的性质可求得其最小值.
解答:解:令f(x)=sin(πx)=1,则πx=
π
2
+2k1π
,解得x=
1
2
+2k1,k1∈Z,
所以P(
1
2
+2k1,1),
令g(x)=cos(πx)=-1,则πx=π+2k2π,解得x=1+2k2,k2∈Z,
所以Q(1+2k2,-1),
所以|PQ|=
(
1
2
+2k1-1-2k2)2+(1+1)2
=
[2(k1-k2)-
1
2
]2+4

因为k1,k2∈Z,所以k1-k2∈Z,
所以当k1=k2时,|PQ|取得最小值为
1
4
+4
=
17
2

故选C.
点评:本题考查正、余弦函数的图象、两点间距离公式,考查数形结合思想,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网