题目内容

若以连续掷两次骰子分别得到的点数m、n作为点P的坐标(m,n),则点P在圆x2+y2=25外的概率是
 
分析:先计算出基本事件总数,再计算出事件“点P在圆x2+y2=25外”包含的基本事件数,再由公式求出概率即可
解答:解:由题意以连续掷两次骰子分别得到的点数m、n作为点P的坐标(m,n),这样的点共有36个
“点P在圆x2+y2=25外”包含的基本事件有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共21个
故点P在圆x2+y2=25外的概率是
21
36
=
7
12

故答案为:
7
12
点评:本题考查古典概率模型及其概率计算公式,解题的关键是计算出所有的基本事件的个数以及所研究的事件所包含的基本事件总数.本题计算事件所包含的基本事件数用的是列举法,对一些规律不明显的事件所包含基本事件的统计经常用列举法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网