题目内容
设函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_ST/0.png)
(1)若a=f'(2),b=f'(1),c=f'(0),求a、b、c的值;
(2)在(1)的条件下,记
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_ST/2.png)
(3)设关于x的方程f'(x)=0的两个实数根为α、β,且1<α<β<2.试问:是否存在正整数n,使得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_ST/3.png)
【答案】分析:(1)求出f'(x)=x2+ax+b,由 a=f'(2),b=f'(1),c=f'(0),求出a=-1,b=c=-3.
(2)根据
,F(1)和 F(2)都小于
,且F(1)+F(2)=0,当n≥3时,F(n)<
(
),用放缩法证明F(1)+F(2)+F(3)+…+F(n)<
…+
<
.
(3)根据 f'(1)•f'(2)=(1-α)(1-β)(2-α)(2-β)=(α-1)(2-α)(β-1)(2-β )≤
=
,可得
,或
,故存在n=1或2,
使
.
解答:解:(1)f'(x)=x2+ax+b,由已知可得a=-1,b=c=-3.…(4分)
(2)
,
当n=1时,
;当n=2时,
;
当n≥3时,
.
所以F(1)+F(2)+F(3)+…+F(n)<F(1)+F(2)+
…+![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/17.png)
=
(1+
+
-
-
-
)<
(1+
+
)=
,
所以F(1)+F(2)+F(3)+…+F(n)<
N*).…(9分)
(3)根据题设,可令f'(x)=(x-α)(x-β).
∴f'(1)•f'(2)=(1-α)(1-β)(2-α)(2-β)
=
,
∴
,或
,所以存在n=1或2,使
.…(13分).
点评:本题考查用放缩法、数学归纳法证明不等式,基本不等式的应用,是一道难题.
(2)根据
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/6.png)
(3)根据 f'(1)•f'(2)=(1-α)(1-β)(2-α)(2-β)=(α-1)(2-α)(β-1)(2-β )≤
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/10.png)
使
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/11.png)
解答:解:(1)f'(x)=x2+ax+b,由已知可得a=-1,b=c=-3.…(4分)
(2)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/12.png)
当n=1时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/14.png)
当n≥3时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/15.png)
所以F(1)+F(2)+F(3)+…+F(n)<F(1)+F(2)+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/17.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/27.png)
所以F(1)+F(2)+F(3)+…+F(n)<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/28.png)
(3)根据题设,可令f'(x)=(x-α)(x-β).
∴f'(1)•f'(2)=(1-α)(1-β)(2-α)(2-β)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/29.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125331902909266/SYS201310251253319029092021_DA/32.png)
点评:本题考查用放缩法、数学归纳法证明不等式,基本不等式的应用,是一道难题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目