题目内容
8.已知a,b∈R+,则$\frac{{\sqrt{{a^3}b}}}{{\root{3}{ab}}}$=( )A. | ${a^{\frac{1}{6}}}{b^{\frac{7}{6}}}$ | B. | ${a^{\frac{7}{6}}}{b^{\frac{1}{6}}}$ | C. | ${a^{\frac{1}{3}}}{b^{\frac{1}{6}}}$ | D. | ${a^{\frac{1}{2}}}{b^{\frac{1}{6}}}$ |
分析 利用根式与分数指数幂化简$\frac{{\sqrt{{a^3}b}}}{{\root{3}{ab}}}$=$\frac{{a}^{\frac{3}{2}}{b}^{\frac{1}{2}}}{{a}^{\frac{1}{3}}{b}^{\frac{1}{3}}}$=${a}^{\frac{3}{2}-\frac{1}{3}}$${b}^{\frac{1}{2}-\frac{1}{3}}$,从而解得.
解答 解:$\frac{{\sqrt{{a^3}b}}}{{\root{3}{ab}}}$=$\frac{{a}^{\frac{3}{2}}{b}^{\frac{1}{2}}}{{a}^{\frac{1}{3}}{b}^{\frac{1}{3}}}$
=${a}^{\frac{3}{2}-\frac{1}{3}}$${b}^{\frac{1}{2}-\frac{1}{3}}$
=${a^{\frac{7}{6}}}{b^{\frac{1}{6}}}$,
故选B.
点评 本题考查了根式与分数指数幂的互化.
练习册系列答案
相关题目
13.函数$y=\sqrt{1+2x}+\sqrt{1-2x}$的值域为( )
A. | $[{1,\sqrt{2}}]$ | B. | [2,4] | C. | $[{\sqrt{2},2}]$ | D. | $[{1,\sqrt{3}}]$ |