ÌâÄ¿ÄÚÈÝ
17£®ÔÚ¡÷ABCÖУ¬AB¡ÍAC£¬$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$£¬ÇÒ|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|=1£¬Ôò$\overrightarrow{CA}$•$\overrightarrow{CB}$µÈÓÚ£¨¡¡¡¡£©A£® | $\sqrt{2}$ | B£® | $\sqrt{3}$ | C£® | 3 | D£® | 2$\sqrt{3}$ |
·ÖÎö ¸ù¾ÝÒÑÖªÌõ¼þ¿ÉÅжÏOΪBC±ßµÄÖе㣬¡÷ABOΪµÈ±ßÈý½ÇÐΣ¬ËùÒÔ¿ÉÒÔÇó³ö$|\overrightarrow{CA}|£¬|\overrightarrow{CB}|£¬¡ÏACB$£¬¸ù¾ÝÊýÁ¿»ýµÄ¼ÆË㹫ʽ¼´¿ÉÇóµÃ´ð°¸£®
½â´ð ½â£ºÈçͼ£¬
ÓÉÒÑÖªÌõ¼þÖª£¬OÊÇBCÖе㣬¡÷ABOΪµÈ±ßÈý½ÇÐΣ»
¡à$|\overrightarrow{CB}|=2£¬¡ÏACB=30¡ã£¬|\overrightarrow{CA}|=\sqrt{3}$£»
¡à$\overrightarrow{CA}•\overrightarrow{CB}=3$£®
¹ÊÑ¡£ºC£®
µãÆÀ ¿¼²é¹²ÏßÏòÁ¿»ù±¾¶¨Àí£¬Ö±½ÇÈý½ÇÐζ¥µãºÍб±ßÖеãÁ¬Ïߵij¤¶ÈµÈÓÚб±ßµÄÒ»°ë£¬ÒÔ¼°ÊýÁ¿»ýµÄ¼ÆË㹫ʽ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®µ±¿ÕÆøÎÛȾָÊý£¨µ¥Î»£º¦Ìg/m3£©Îª0¡«50ʱ£¬¿ÕÆøÖÊÁ¿¼¶±ðΪһ¼¶£¬¿ÕÆøÖÊÁ¿×´¿öÊôÓÚÓÅ£»µ±¿ÕÆøÎÛȾָÊýΪ50¡«100ʱ£¬¿ÕÆøÖÊÁ¿¼¶±ðΪ¶þ¼¶£¬¿ÕÆøÖÊÁ¿×´¿öÊôÓÚÁ¼£»µ±¿ÕÆøÎÛȾָÊýΪ100¡«150ʱ£¬¿ÕÆøÖÊÁ¿¼¶±ðΪÈý¼¶£¬¿ÕÆøÖÊÁ¿×´¿öÊôÓÚÇá¶ÈÎÛȾ£»µ±¿ÕÆøÎÛȾָÊýΪ150¡«200ʱ£¬¿ÕÆøÖÊÁ¿¼¶±ðΪËļ¶£¬¿ÕÆøÖÊÁ¿×´¿öÊôÓÚÖжÈÎÛȾ£»µ±¿ÕÆøÎÛȾָÊýΪ200¡«300ʱ£¬¿ÕÆøÖÊÁ¿¼¶±ðΪÎ弶£¬¿ÕÆøÖÊÁ¿×´¿öÊôÓÚÖضÈÎÛȾ£»µ±¿ÕÆøÎÛȾָÊýΪ300ÒÔÉÏʱ£¬¿ÕÆøÖÊÁ¿¼¶±ðΪÁù¼¶£¬¿ÕÆøÖÊÁ¿×´¿öÊôÓÚÑÏÖØÎÛȾ£®Ä³ÈÕijʡx¸ö¼à²âµãÊý¾Ýͳ¼ÆÈçÏ£º
£¨1£©¸ù¾ÝËù¸øͳ¼Æ±íºÍƵÂÊ·Ö²¼Ö±·½Í¼ÖеÄÐÅÏ¢Çó³öx£¬yµÄÖµ£¬²¢Íê³ÉƵÂÊ·Ö²¼Ö±·½Í¼£»
£¨2£©ÈôAÊй²ÓÐ5¸ö¼à²âµã£¬ÆäÖÐÓÐ3¸ö¼à²âµãΪÇá¶ÈÎÛȾ£¬2¸ö¼à²âµãΪÁ¼£®´ÓÖÐÈÎÒâÑ¡È¡2¸ö¼à²âµã£¬Ê¼þA¡°ÆäÖÐÖÁÉÙÓÐÒ»¸öΪÁ¼¡±·¢ÉúµÄ¸ÅÂÊÊǶàÉÙ£¿
¿ÕÆøÎÛȾָÊý £¨µ¥Î»£º¦Ìg/m3£© | [0£¬50] | £¨50£¬100] | £¨100£¬150] | £¨150£¬200] |
¼à²âµã¸öÊý | 15 | 40 | y | 10 |
£¨2£©ÈôAÊй²ÓÐ5¸ö¼à²âµã£¬ÆäÖÐÓÐ3¸ö¼à²âµãΪÇá¶ÈÎÛȾ£¬2¸ö¼à²âµãΪÁ¼£®´ÓÖÐÈÎÒâÑ¡È¡2¸ö¼à²âµã£¬Ê¼þA¡°ÆäÖÐÖÁÉÙÓÐÒ»¸öΪÁ¼¡±·¢ÉúµÄ¸ÅÂÊÊǶàÉÙ£¿
5£®¶¨ÒåÓòΪRµÄº¯Êýf£¨x£©Âú×ãf£¨x+1£©=2f£¨x£©£¬µ±x¡Ê[0£¬2£©Ê±£¬f£¨x£©=$\left\{\begin{array}{l}{{x}^{2}-x£¬x¡Ê[0£¬1£©}\\{lo{g}_{\sqrt{2}}£¨x+1£©£¬x¡Ê[1£¬2£©}\end{array}\right.$£¬Èôx¡Ê[-2£¬0£©Ê±£¬¶ÔÈÎÒâµÄt¡Ê[1£¬2]¶¼ÓÐf£¨x£©¡Ý$\frac{t}{16}$-$\frac{a}{8{t}^{2}}$³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£® | £¨-¡Þ£¬6£© | B£® | [6£¬+¡Þ£© | C£® | £¨-¡Þ£¬6] | D£® | £¨-¡Þ£¬12] |
12£®ÔÚ¡÷ABCÖУ¬$\overrightarrow{A{B}^{\;}}$2=$\overrightarrow{BA}$•$\overrightarrow{BC}$£¬$\overrightarrow{OA}$+$\overrightarrow{OC}$+$\overrightarrow{AB}$=0£¬ÇÒ|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|=1£¬Ôò$\overrightarrow{CA}$•$\overrightarrow{CB}$µÈÓÚ£¨¡¡¡¡£©
A£® | 3 | B£® | $\sqrt{3}$ | C£® | $\frac{3}{2}$ | D£® | 2$\sqrt{3}$ |