题目内容

a
=(-
1
2
,1),
b
=(-
3
2
,2x)

(1)若满足3
a
+
b
a
-
b
平行,求实数x的值;
(2)若满足3
a
+
b
a
-
b
垂直,求实数x的值;
(3)若满足3
a
+
b
a
-
b
所成角为钝角,求实数x的取值范围.
(1)∵3
a
+
b
=(-3,2x+3);
a
-
b
=(1,1-2x)
∴因为3
a
+
b
a
-
b
平行,
所以-3(1-2x)=2x+3
解得x=
3
2

(2)因为3
a
+
b
a
-
b
垂直,
所以-3+(2x+3)(1-2x)=0
解得x=0或x=-1
(3)∵3
a
+
b
a
-
b
所成角为钝角,
(3
a
+
b
)•(
a
-
b
)<0
x≠
3
2

即-3+(2x+3)(1-2x)<0
解得x>0或x<-1且x≠
3
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网