题目内容

设三组实验数据(x1,y1).(x2,y2).(x3,y3)的回归直线方程是:y=bx+a,使代数式[y1-(bx1+a)]2+[y2-(bx2+a)]2+[y3-(bx3+a)]2的值最小时,,(分别是这三组数据的横、纵坐标的平均数)
若有七组数据列表如图:
x2345678
y4656.287.18.6
(Ⅰ)求上表中前三组数据的回归直线方程;
(Ⅱ)若|yi-(bxi+a)|≤0.2,即称(xi,yi)为(Ⅰ)中回归直线的拟和“好点”,求后四组数据中拟和“好点”的概率.
【答案】分析:(I)根据所给的数据做出x与y的平均数,代入求线性回归方程系数的公式,利用最小二乘法做出结果,把样本中心点代入求出a的值,写出线性回归方程.
(II)本题是一个古典概型,试验发生包含的事件是4,检验出符合好点的数据,根据所给的表示式检验出符合条件的事件数,根据古典概型概率公式得到结果.
解答:解:(I)前三组数的平均数:=3,=5
根据公式:b=
∴a=5-×3=
∴回归直线方程是:y=
(II)由题意知本题是一个古典概型,
试验发生包含的事件是4,检验出符合好点的数据,
|6.2-3.5-0.5×5|=0.2≤0.2
|8-3.5-0.5×6|=1.5>0.2
|7.1-3.5-0.5×7|=0.1<0.2
|8.6-3.5-0.5×8|=1.1>0.2
综上,拟和的“好点”有2组,
∴“好点”的概率P=
点评:本题考查线性回归方程的求法,考查最小二乘法求解线性回归方程的系数,考查古典概型及其概率公式.考查利用挨个检验的方法验证是否符合题意,本题是一个综合题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网