题目内容
【题目】已知二次函数的最小值为1,且.
(1)求的解析式;
(2)若在区间上不单调,求实数m的取值范围;
(3)求函数在区间上的最小值.
【答案】(1) ,(2) ,(3)
【解析】
(1)根据题意设出,将f(0)=3代入,可得f(x)的解析式;
(2)若f(x)在区间[3m,m+2]上不单调,则1∈(3m,m+2),解得实数m的取值范围;
(3)结合二次函数的图象和性质,分析各种情况下函数f(x)在区间[t﹣1,t]上的最小值g(t),综合讨论结果,可得答案.
(1),
∴函数图象关于直线对称,
又∵二次函数的最小值为1,
∴设,
由得:,
故
(2)要使函数在区间上不单调,
则,
解得:
(3)由(1)知,
所以函数图象开口向上,对称轴方程为,
①当即时,函数在区间上单调递增,
当时的最小值,
②当.即时,函数在区间上单调递减,在区间上单调递增,
当时,的最小值,
③当时,函数在区间上单调递减,
当时,的最小值,
综上所述,
练习册系列答案
相关题目