题目内容

8.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则$|{\frac{z_2}{z_1}}|$=1.

分析 由已知求出z2,然后利用复数代数形式的乘除运算化简,再利用复数模的计算公式求得答案.

解答 解:∵复数z1,z2在复平面内的对应点关于虚轴对称,且z1=2+i,
∴z2=-2+i,
则$\frac{{z}_{2}}{{z}_{1}}=\frac{-2+i}{2+i}=\frac{(-2+i)(2-i)}{(2+i)(2-i)}$=$\frac{-4+2i+2i+1}{5}$=$-\frac{3}{5}+\frac{4}{5}i$,
∴$|{\frac{z_2}{z_1}}|$=$\sqrt{(-\frac{3}{5})^{2}+(\frac{4}{5})^{2}}=1$,
故答案为:1.

点评 本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网