题目内容
13.已知方程x2+2mx+2m+1=0有两根.(1)若一个根(-1,0)另-根在(1,2)内,求m的取值范围;
(2)若一个根在(-1,1)另-根在(1,2)内,求m的取值范围.
分析 构造函数f(x)=x2+2mx+2m+1,
(1)由题意可得$\left\{\begin{array}{l}{f(-1)f(0)=2(2m+1)<0}\\{f(1)f(2)=(4m+2)(6m+5)<0}\end{array}\right.$;
(2)由题意可得$\left\{\begin{array}{l}{f(1)=4m+2<0}\\{f(2)=6m+5>0}\end{array}\right.$.
解答 解:令f(x)=x2+2mx+2m+1,
(1)由题意知,
$\left\{\begin{array}{l}{f(-1)f(0)=2(2m+1)<0}\\{f(1)f(2)=(4m+2)(6m+5)<0}\end{array}\right.$,
解得,-$\frac{5}{6}$<m<$-\frac{1}{2}$;
(2)由(1)知,
$\left\{\begin{array}{l}{f(1)=4m+2<0}\\{f(2)=6m+5>0}\end{array}\right.$,
解得,-$\frac{5}{6}$<m<$-\frac{1}{2}$.
点评 本题考查了方程的根与函数的零点的关系应用.
练习册系列答案
相关题目
5.F为抛物线C:y2=8x的焦点,P(x1,y1)为抛物线C上一点,若|FP|=3,则x1=( )
A. | 1 | B. | 5 | C. | 1或5 | D. | 1或-5 |