题目内容
在计算“”时,某同学学到了如下一种方法:先改写第k项:
由此得
…………
相加,得
类比上述方法,请你计算“”,
其结果为
解析试题分析::∵n(n+1)(n+2)="1" 4 [n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
∴1×2×3=(1×2×3×4-0×1×2×3)
2×3×4=(2×3×4×5-1×2×3×4)
…
n(n+1)(n+2)= [n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
∴1×2×3+2×3×4+…+n(n+1)(n+2)= [(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n×(n+1)×(n+2)×(n+3)]-(n-1)×n×(n+1)×(n+2)= n(n+1)(n+2)(n+3)
故答案为: n(n+1)(n+2)(n+3)
考点:进行简单的合情推理
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
练习册系列答案
相关题目