题目内容
椭圆中,以点为中点的弦所在直线方程是__________.
已知,,,,动点满足且,则点到点的距离大于的概率为______.
已知圆过两点,且圆心在上.
(1)求圆的方程;
(2)设是直线上的动点,是圆的两条切线,为切点,求四边形面积的最小值.
某校高三(1)班在一次单元测试中,每位同学的考试分数都在区间内,将该班所有同学的考试分数分为七组:,绘制出频率分布直方图如图所示,已知分数低于112 分的有18人,则分数不低于120分的人数为( )
A. 10 B. 12 C. 20 D. 40
已知椭圆经过点,且离心率.
(1)求椭圆的方程;
(2)过点能否作出直线,使与椭圆交于两点,且以为直径的圆经过坐标原点?若存在,求出直线的方程;若不存在,说明理由.
已知,动点满足,且,其中为坐标原点,则动点到点的距离大于的概率为( )
A. B. C. D.
与第6题条件相同,家委会决定对班上的中位数以上的同学进行奖励,请问,如图所示的频率分布直方图中,理论上的中位数是( )
A. 108.8 B. 114 C. 112 D. 116
已知数列的前项和,则_________;
以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:
(1)计算该炮兵连这8周中总的命中频率,并确定第几周的命中频率最高;
(2)以(1)中的作为该炮兵连炮兵甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射3次,记命中的次数为,求的数学期望;
(3)以(1)中的作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过?(取)