ÌâÄ¿ÄÚÈÝ
9£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬¶¥µãA¡¢CµÄ×ø±ê·Ö±ðΪ£¨-1£¬2£©¡¢£¨3£¬2£©£¬µãBÔÚxÖáÉÏ£¬Å×ÎïÏßy=-x2+bx+c¾¹ýA¡¢CÁ½µã£®£¨1£©Çó¸ÃÅ×ÎïÏßËù¶ÔÓ¦µÄº¯Êý¹Øϵʽ£»
£¨2£©µãPÊÇÅ×ÎïÏßÉÏÒ»¶¯µã£¬µ±S¡÷PAB=$\frac{5}{4}$S¡÷ABCʱ£¬ÇóµãPµÄ×ø±ê£»
£¨3£©ÈôµãNÓɵãB³ö·¢ÒÔÿÃë$\frac{6}{5}$¸öµ¥Î»µÄËÙ¶ÈÑرßBC¡¢CAÏòµãAÒƶ¯£¬$\frac{1}{3}$Ãëºó£¬µãMÒ²ÓɵãB³ö·¢£¬ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÑØÏ߶ÎBOÏòµãOÒƶ¯£¬µ±ÆäÖÐÒ»¸öµãµ½´ïÖÕµãʱÁíÒ»¸öµãҲֹͣÒƶ¯£¬µãNµÄÒƶ¯Ê±¼äΪtÃ룬µ±MN¡ÍABʱ£¬ÇëÖ±½Óд³ötµÄÖµ£¬²»±Øд½â´ð¹ý³Ì£®
·ÖÎö £¨1£©¸ù¾ÝÅ×ÎïÏßy=-x2+bx+c¾¹ýA¡¢CÁ½µã£¬¿ÉµÃº¯ÊýͼÏó¶Ô³ÆÖá·½³Ì£¬Çó³öbÖµºó£¬½«Aµã×ø±ê´úÈë¿ÉµÃcÖµ£¬½ø¶øµÃµ½¸ÃÅ×ÎïÏßËù¶ÔÓ¦µÄº¯Êý¹Øϵʽ£»
£¨2£©Éè³öµãPµÄ×ø±ê£¬Çó³öPµ½Ö±ÏßABµÄ¾àÀ룬½ø¶ø¿ÉµÃµãPµÄ×ø±ê£»
£¨3£©µ±MN¡ÍABʱ£¬Á½Ö±ÏßбÂʺÍΪ1£¬Éè³öM£¬NÁ½µãµÄ×ø±ê£¬¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=-x2+bx+c¾¹ýA£¨-1£¬2£©¡¢C£¨3£¬2£©Á½µã£¬
¹ÊÅ×ÎïÏßy=-x2+bx+cµÄ¶Ô³ÆÖá·½³Ìx=$\frac{b}{2}$=1£¬½âµÃb=2£¬
¹Êµ±x=-1ʱ£¬2=c-3£¬½âµÃ£ºc=5£¬
¡à¸ÃÅ×ÎïÏßËù¶ÔÓ¦µÄº¯Êý¹Øϵʽy=-x2+2x+5£¬
£¨2£©¡ßRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=4£¬BC=2£¬
¡àBµã×ø±êΪ£º£¨3£¬0£©£¬
¡àS¡÷ABC=4£¬AB=$\sqrt{{AC}^{2}+{BC}^{2}}$=2$\sqrt{5}$£¬
ÁîABËùÔÚÖ±Ïß·½³ÌΪ£ºy=k£¨x-3£©£¬½«A£¨-1£¬2£©´úÈëµÃ£ºk=-$\frac{1}{2}$£¬
¼´x+2y-3=0£¬
ÁîPµã×ø±êΪ£¨a£¬-a2+2a+5£©£¬
µ±S¡÷PAB=$\frac{5}{4}$S¡÷ABC=5ʱ£¬
Pµãµ½ABµÄ¾àÀëd=$\sqrt{5}$=$\frac{|-2{a}^{2}+5a+7|}{\sqrt{5}}$£¬
¼´-2a2+5a+2=0»ò-2a2+5a+12=0£¬
½âµÃ£ºa=$\frac{5¡À\sqrt{41}}{4}$£¬»òa=4£¬»òa=-$\frac{3}{2}$£¬
¹ÊPµã×ø±êΪ£¨$\frac{5+\sqrt{41}}{4}$£¬$\frac{27-\sqrt{41}}{8}$£©£¬»ò£¨$\frac{5-\sqrt{41}}{4}$£¬$\frac{27+\sqrt{41}}{8}$£©£¬»ò£¨4£¬-3£©£¬»ò£¨-$\frac{3}{2}$£¬$-\frac{1}{4}$£©£¬
£¨3£©t=$\frac{5}{6}$£¬»òt=$\frac{10}{3}$
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǶþ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÄѶÈÖеµ£¬ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬µãµ½Ö±Ïß¾àÀ빫ʽ£¬Ö±Ïß´¹Ö±µÄ³äÒªÌõ¼þµÈ֪ʶµãÊǽâ´ðµÄ¹Ø¼ü£®