题目内容

如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,又BC1⊥AC,过C1作C1H⊥底面ABC,垂足为H,则点H一定在(  )
分析:由已知中斜三棱柱ABC-A1B1C1中,∠BAC=90°,又BC1⊥AC,由线面垂直的判定定理可得AC⊥平面ABC1,故AC⊥平面ABC1内的任一直线,则当过C1作C1H⊥底面ABC时,垂足为H,C1H?平面ABC1,进而可以判断出H点的位置.
解答:解:∵在斜三棱柱ABC-A1B1C1中,∠BAC=90°,
∴AB⊥AC
又∵BC1⊥AC,BC1∩AB=B
∴AC⊥平面ABC1
则C1作C1H⊥底面ABC,
故C1H?平面ABC1
故点H一定在直线AB上
故选B
点评:本题考查的知识点是棱柱的结构特征,线面垂直的判定定理和性质定理,其中熟练掌握线面垂直的性质定理和判定定理,并熟练掌握它们之间的相互转化是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网